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On-line and off-line atmospheric  
chemistry transport (ACT) models 

On-line chemistry permits explicit simulation of feedbacks 
between atmospheric dynamic and chemical processes.  

On different time-scales the following issues are particularly 
relevant: 
•  CO2 and CH4 cycles (well mixed greenhouse gases)  
•  O3 (effects in both the short and longwave domain)  
•  Direct effect of aerosols (mainly shortwave) 
•  Indirect/semi-direct aerosol forcing (coupling to clouds 

and related radiation) 



Applications 

Air quality predictions (e.g. Enviro HIRLAM)  

Earth system (climate) simulations (global and regional 
models, e.g. HadCM3, ECHAM6, RegClim). 



Governing equations 

Repetition from Sergyi’s presentation 



Navier-Stokes equation (Unit mass 
version of “Newton's second law) 
expressed in the accelerated 
coordinate system of the Earth     
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Continuity equation for dry air 
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Continuity equation for various tracers  
(e.g. water vapour, liquid and solid 
water, SO2, 137Cs, particles …)   
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Equation of state for ideal gases (no 
particle density included in ρ).  p = ρRT
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Exact governing dynamical equations 



Continuity equations 
Conservation of mass or conservation of mixing ration? 

   

Conservation of dry air mass. The volume density continuity equation:
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Conservation of mass of a chemical species, t:

∂ρt

∂t
= −∇ ⋅ (ρtV ) + Dρt

+ Sρt
                              

dρt

dt
= −ρt∇ ⋅V + Dρt

+ Sρt

⎫

⎬
⎪⎪

⎭
⎪
⎪

ρt    density of 
       tracer t
Sρt

  sources/sinks



Continuity equations 
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From the volume density continuity equation for tracer t we have: 

Chemistry works on mixing ratio - NOT on density! 



Continuity equations 
Using the continuity equation for dry air, and re-ordering 
terms we get the advection equation for mixing ratio: 
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Desired properties for numerical solutions to the continuity equation 

•  Locally mass conserving 

•  Shape conserving (positive definite, monotonic and non-
oscillatory) 

•  Avoid numerical mixing of tracers 

•  Transportive and local (solution must follow characteristics) 

•  Consistent (avoid mass-wind inconsistency problem) 

•  Conserving a constant field in a non-divergent flow 

•  Computationally efficient (i.e. high accuracy for a given 
computational resource). E.g numerically stable for long time 
steps 
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Semi-Lagrangian integration 



Semi-Lagrangian approximation to the 
continuity equation 

One-dimensional 

Any-dimensional 
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Second order Adams-Bashforth type 
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k  Grid point/cell index. k = 1, …, K ,        K = nlon*nlat 
l  Grid point/cell index. l = 1, …, K. 
wk,l  Weights on upstream departure grid points representing the polynomial 

 upstream interpolations. These weights are only different from zero in 
 Eulerian points l close to the semi-Lagrangian departure point.  

 Per definition we have      

 Extrapolated value 

Traditional semi-Lagrangian (SL) scheme. Here solving 
the volume density continuity equation as an example:  
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Explicit forecast in grid point k : 
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Semi-Lagrangian approximation to the continuity 
equation 

E.g. cubic (third order) interpolating scheme for the case of 
pure 1-D advection of a tracer: 
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Semi Lagrangian scheme for solving the volume 
density con6nuity equa6on (two dimensions) 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Bicubic interpola1on 
requires 4×4 = 16 
points. 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