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Aerosol properties 



We will look at 
Physical and chemical characteristics of aerosol 
particles in ACTM: 
n  chemical components and their importance with 

the spatial scales 
n  particle dimension and the concept of size 

distributions (number, surface and mass) and 
their mathematical description (as size bins, as 
log-normal modes)  

n  aerosol-cloud interaction: chemical and physical 
properties of cloud condensation nuclei 



Aerosols, particles, PM 

n  definition Volume of air that 
contains particles in 
suspension, in liquid 
or solid phase 
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They are very different 
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in form 
dimension 
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Their description in models is complex  



Why are they important? 
n  When inhaled they have effects on health 

> 10 µm 

7-10 µm 

2.1-3.3 µm 

... 



Why are they important? 
n  When inhaled they have effects on health 
n  They influence ecosystems, through their 

deposition 
n  They cause visibility degradation 



Why are they important? 
n  When inhaled they have effects on health 
n  They influence ecosystems, through their 

deposition 
n  They cause visibility degradation 
n  They influence the climate: 

"  Absorbing and scattering solar radiation and 
"   Influencing the dimension, the abundance and 

the formation speed  of cloud droplets 



Aerosols over Europe 

Robles-Gonzales et al, 2000 

Aerosol optical thickness 



Atmospheric aerosols: 
sources and sinks 

Sources Sinks 



natural sources 
Sources Sinks 

NATURAL 



man-made aerosols 
Sources Sinks 

ANTHROPOGENIC 



directly emitted or 
 formed in the atmosphere 

Sources Sinks 

PRIMARY 

SECONDARY 



Properties 
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         Dimension (micron) 
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 Ammonium 

Carbonaceous 
compounds 

Carbonaceouo 
compounds 

Mass 

Sulphates 

PM10: total mass of particles with dimension less then 10 µm 
PM2.5: total mass of particles with dimension less then 2.5 µm 



Aerosol chemical composition 
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Chemical composition and scale 



global 

Sea salt 

Desert dust 

Carbonaceous part. 

sulphates NASA 



How to describe particles with 
such different dimensions? 

Discrete function 



Continuous size distributions 
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Continuous size distributions 

N = nN (D)dD
0

!

"

n(D)dD = number of particles per cm-3 with diameter between D and D+dD 

nN (D) =
dN
dD

nN (D) =
dN

d logD



Distributions also for… 

number nN (D) =
dN
dD



Distributions also for… 

number nN (D) =
dN
dD

surface 

volume 

nS (D) = !D
2nN (D)

nV (D) =
!
6
D3nN (D)



How do they look like? 



Measured size distributions 
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Number distribution 

Volume distribution 

Chemical composition 
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Measured size distributions 
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How do we model a size 
distribution? 

Sectional- size bins 

Strenghts: 
Flexible in representing aerosol distributions 
Multicomponent simulations 
Well developed codes 

Limitations: 
Significant numerical diffusion for particle growth 
Computationally intensive 
Accuracy depens on the number of classes 

Whitby and McMurry, 1997 



How do we model a size 
distribution? 

Modal 

Strenghts: 
Flexible model structure 
Computationally fast 

Limitations: 
Accuracy depends on the  form of the distribution 
which is used 

Whitby and McMurry, 1997 



How do we model a size 
distribution? 

Monodisperse 

Strenghts: 
Flexible model structure 
Computationally very fast 

Limitations: 
Useful for rough estimates of dynamics 
No information on size distributions 

Whitby and McMurry, 1997 



The log-normal distribution 
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N=total particle number; D=diameter; σ=standard deviation; 
 
D- = mean diameter 
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Cloud condensation Nuclei 
(CCN) 

n  If particles were not present in the 
atmosphere cloud could not be 
formed 

n  Cloud condensation nuclei are 
particles that can activate to grow to 
cloud droplets in presence of water 
vapour supersaturation 



n  Supersat. ratio  (S) =  
= f (chem. comp; diameter of activation) 
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n  CCN given for a certain supers., as 
CCN(s) … CCN(0.5%) … CCN(1%) 
n  For particles with  
same chem. comp. 
 
n  For particles with 
different chem. comp. 
 
 
 

CCN(s) = n(Dp )dDp
Ds

!

"

Dp = activation diameter 

CCN(s) = fs (Dp )n(Dp )dDp
0

!

"

fs = fraction of part. activated at s 



CCN from particles with 
different chemical composition same chemical composition 



How are CCN modelled? 

n  For long time empirical functions 
have been used …. 

 
 
CCN(s) = csk c and k are empirically derived 
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n  For long time empirical functions 
have been used …. 

 
 
CCN(s) = csk

c(cm-3) k Location 
190 0.8 Pacific 
250 0.5 North Atlantic 
400 0.3 Polluted Pacific 
600 0.5 Continental 
3500 0.9 Cont. (Buffalo, 

NY) 

c corresponds to s=1% 

Hegg and Hobbs, 1992 


