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VWe will look at

Physical and chemical characteristics of aerosol
particles in ACITM:

s chemical components and their importance with
the spatial scales

s particle dimension and the concept of size
distributions (number, surface and mass) and
their mathematical description (as size bins, as
log-normal modes)

s aerosol-cloud interaction: chemical and physical
properties of cloud condensation nuclei




Aerosols, particles, PM

s definition

Volume of air that
contains particles in
suspension, in liquid
or solid phase
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They are very different
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in form
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Their description in models is complex
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Why are they important?
When inhaled they have effects on health

They influence ecosystems, through their
deposition

They cause visibility degradation

They influence the climate:

Absorbing and scattering solar radiation and

Influencing the dimension, the abundance and
the formation speed of cloud droplets




Aerosols over Europe

1C°E
LONGITUDE

Robles-Gonzales et al, 2000




Atmospheric aerosols:
sources and sinks
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natural sources
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man-made aerosols
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Extraterrestrial
dust

directly emitted or
formed In the atmosphere
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Properties

ulphates I

Nitrates |

Ammonium Sea shit

esert dast

Carbonaceous

e compounds
Carbonaceo

compounds

0.1

Dimension (micron)

: total mass of particles with dimension less then 10 um
: total mass of particles with dimension less then 2.5 um




Aerosol chemical composition

Raes et al, Atm. Env., 2000
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Chemical composition and scale

regional

Nitrates

1C°E
LONGITUDE

Sea salt




global

Aerosol Optical Depth

Sea salt




How to describe particles with
such different dimensions?

Size Range O h
(um) (cm™)

Discrete function




Continuous size distributions

00

N = f n(D)dD
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n(D)dD = number of particles per cm-3 with diameter between D and D+dD




Continuous size distributions

00

N = f n(D)dD

0

n(D)dD = number of particles per cm-3 with diameter between D and D+dD

n(D)dD = d—N

dD




Continuous size distributions

n(D)dD = number of particles per cm-3 with diameter between D and D+dD
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Distributions also for...

dN
ST




Distributions also for...

dN
ST

surface n.(D)=maD’n, (D)

n, (D) = %D%N (D)




How do they look like?
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Vleasured size distributions
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Vleasured size distributions
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Vleasured size distributions
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How do we model a size
distribution?

Strenghts:
Flexible in representing aerosol distributions
Multicomponent simulations

Well developed codes '

Limitations:

Significant numerical diffusion for particle growt
Computationally intensive

Accuracy depens on the number of classes

Whitby and McMurry, 1997




How do we model a size
distribution?

Strenghts:
Flexible model structure
Computationally fast

/\

Limitations:
Accuracy depends on the form of the distributio
which is used

Whitby and McMurry, 1997




How do we model a size
distribution?

Strenghts:
Flexible model structure
Computationally very fast

Limitations:
Useful for rough estimates of dynamics
No information on size distributions

Whitby and McMurry, 1997




T'he log-normal distribution

dN N (InD -1n D)’
- 1/2 eXp _—2
dinD Qm) "Dlno 2In" o

N=total particle number; D=diameter; o=standard deviation;

D- = mean diameter




T'he log-normal distribution

dN

D- = mean diameter

dinD (27)”Dlno
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N=total particle number; D=diameter; o=standard deviation;
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Cloud condensation Nuclel
(CCN)

s [f particles were not present in the
atmosphere cloud could not be
formed

s Cloud condensation nuclei are
particles that can activate to grow to
cloud droplets in presence of water

vapour supersaturation




s Supersat. ratio (S) =
= f (chem. comp; diameter of activation)

1. I'he higheris S, the smaller is the
diameter of the particle to be activated

2. The more soluble the particle, the lower
is S to be able to activate the particle




s Supersat. ratio (S) =
= f (chem. comp; diameter of activation)

1. I'he higher is S, the smaller is the
diameter of the particle to be activated

2. The more soluble the particle, the lower
is S to be able to activate the particle




s CCN given for a certain supers., as
CCN(s) ... CCN(0.5%) ... CCN(1%)
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s CCN given for a certain supers., as
CCN(s) ... CCN(0.5%) ... CCN(1%)

s For particles with
same chem. comp.

CCN(s) = jn(Dp)de

D, = activation diameter

s For particles with
different chem. comp. SO ff(D n(D,)dD,

f, = fraction of part. activated at s




CCN from particles with

same chemical composition different chemical composition




How are CCN modelled?

s For long time empirical functions
have been used ....

CCN(S) — CSk c and k are empirically derived




How are CCN modelled?

s For long time empirical functions
have been used ....

CCN(S) — CSk c corresponds to s=1%

Pacific

North Atlantic
Polluted Pacific
Continental
Cont. (Buffalo,
NY)

Hegg and Hobbs, 1992




