Aerosol properties

Elisabetta Vignati

Joint Research Centre Institute for Environment and Sustainability Ispra, Italy

YSSS, Odessa, 3-9 July 2011

We will look at

Physical and chemical characteristics of aerosol particles in ACTM:

- chemical components and their importance with the spatial scales
- particle dimension and the concept of size distributions (number, surface and mass) and their mathematical description (as size bins, as log-normal modes)
- aerosol-cloud interaction: chemical and physical properties of cloud condensation nuclei

Aerosols, particles, PM

definition

Volume of air that contains particles in suspension, in liquid or solid phase

Particles: how do they look like?

They are very different in: in form dimension chemical composition

Particles: how do they look like?

They are very different in: in form dimension chemical composition

Their description in models is complex

Why are they important? When inhaled they have effects on health

When inhaled they have effects on health
They influence ecosystems, through their deposition

They cause visibility degradation

Why are they important? When inhaled they have effects on health They influence ecosystems, through their deposition They cause visibility degradation They influence the climate: Absorbing and scattering solar radiation and Influencing the dimension, the abundance and the formation speed of cloud droplets

Aerosols over Europe

Robles-Gonzales et al, 2000

Atmospheric aerosols: sources and sinks

natural sources

man-made aerosols

PM10: total mass of particles with dimension less then 10 μ m **PM2.5**: total mass of particles with dimension less then 2.5 μ m

Aerosol chemical composition

urban

Aerosol chemical composition

urban

continental

Raes et al, Atm. Env., 2000

Aerosol chemical composition

urban

continental

Atlantic clean

Raes et al, Atm. Env., 2000

Chemical composition and scale

How to describe particles with such different dimensions?

Size Range	Concentration	
(μm)	(cm^{-5})	
0.001-0.01	100	
0.01-0.02	200	
0.02-0.03	30	
0.03-0.04	20	
0.04-0.08	40	
0.08-0.16	60	
0.16-0.32	200	
0.32-0.64	180	
0.64-1.25	60	
1.25-2.5	20	
2.5-5.0	5	
5.0-10.0	1	

Discrete function

Continuous size distributions

$$N = \int_{0}^{\infty} n(D) dD$$

n(D)dD = number of particles per cm⁻³ with diameter between D and D+dD

Continuous size distributions

$$N = \int_{0}^{\infty} n(D) dD$$

n(D)dD = number of particles per cm⁻³ with diameter between D and D+dD

$$n(D)dD = \frac{dN}{dD}$$

Continuous size distributions

$$N = \int_{0}^{\infty} n_N(D) dD$$

n(D)dD = number of particles per cm⁻³ with diameter between D and D+dD

$$n_N(D) = \frac{dN}{dD} \qquad n_N(D) = \frac{dN}{d\log D}$$

Distributions also for...

number

$$n_N(D) = \frac{dN}{dD}$$

How do they look like?

How do we model a size distribution?

Sectional- size bins

<u>Strenghts</u>: Flexible in representing aerosol distributions Multicomponent simulations Well developed codes

<u>Limitations</u>: Significant numerical diffusion for particle growth Computationally intensive Accuracy depens on the number of classes

Whitby and McMurry, 1997

How do we model a size distribution?

Modal -

<u>Strenghts</u>: Flexible model structure Computationally fast

<u>Limitations</u>: Accuracy depends on the form of the distribution which is used

Whitby and McMurry, 1997

How do we model a size distribution?

1onodisperse

<u>Strenghts</u>: Flexible model structure Computationally very fast

<u>Limitations</u>: Useful for rough estimates of dynamics No information on size distributions

Whitby and McMurry, 1997

The log-normal distribution

$$\frac{dN}{d\ln D} = \frac{N}{(2\pi)^{1/2} D\ln\sigma} \exp\left(-\frac{(\ln D - \ln \overline{D})^2}{2\ln^2\sigma}\right)$$

N=total particle number; D=diameter; σ =standard deviation;

D- = mean diameter

The log-normal distribution

$$\frac{dN}{d\ln D} = \frac{N}{(2\pi)^{1/2} D\ln\sigma} \exp\left(-\frac{(\ln D - \ln \overline{D})^2}{2\ln^2\sigma}\right)$$

N=total particle number; D=diameter; σ =standard deviation;

Cloud condensation Nuclei (CCN)

If particles were not present in the atmosphere cloud could not be formed

 Cloud condensation nuclei are particles that can activate to grow to cloud droplets in presence of water vapour supersaturation

Supersat. ratio (S) = f (chem. comp; diameter of activation) 1. The higher is S, the smaller is the diameter of the particle to be activated 2. The more soluble the particle, the lower is S to be able to activate the particle

Supersat. ratio (S) = f (chem. comp; diameter of activation) 1. The higher is S, the smaller is the diameter of the particle to be activated 2. The more soluble the particle, the lower is S to be able to activate the particle

CCN given for a certain supers., as CCN(s) ... CCN(0.5%) ... CCN(1%)

CCN given for a certain supers., as
 CCN(s) ... CCN(0.5%) ... CCN(1%)
 For particles with same chem. comp.

 D_{p} = activation diameter

CCN given for a certain supers., as
 CCN(s) ... CCN(0.5%) ... CCN(1%)
 For particles with same chem. comp.

 D_{p} = activation diameter

■ For particles with different chem. comp. $CCN(s) = \int_{-\infty}^{\infty} f_s(D_p)n(D_p)dD_p$

 $f_s =$ fraction of part. activated at s

CCN from particles with

same chemical composition

different chemical composition

How are CCN modelled?

For long time empirical functions have been used

 $CCN(s) = cs^k$

c and k are empirically derived

How are CCN modelled?

For long time empirical functions have been used

 $CCN(s) = cs^k$

c corresponds to s=1%

c(cm-3)	k	Location
190	0.8	Pacific
250	0.5	North Atlantic
400	0.3	Polluted Pacific
600	0.5	Continental
3500	0.9	Cont. (Buffalo, NY)
He	egg and Hobbs, 19	992