Planetary boundary layers: our habitat and coupling parts of climate machine

Sergej S. Zilitinkevich

Meteorological Research, Finnish Meteorological Institute Division of Atmospheric Sciences, University of Helsinki A.M. Obukhov Institute of Atmospheric Physics, Moscow

Odessa, 5 July 2011

PBLs in Earth system

Atmospheric planetary boundary layers (PBLs) are strongly turbulent layers immediately affected by dynamic, thermal and other interactions with Earth's surface

PBSs subject to diurnal variations

Absorb surface emissions

Control <u>microclimate</u>, extreme colds and heats, air pollution

Are sensitive to human impacts

Have dozens to thousands *m* heights

Atmospheric and hydrospheric PBLs couple geospheres and include 90% <u>biosphere</u> and 100% <u>anthroposphere</u>

Content

STABLE AND NEUTRAL stratification – comparatively shallow PBLs affected by Earth's rotation and stratification

- •Free-flow stratification
- •Equilibrium PBL height regimes
- •Non-steady regimes \rightarrow prognostic PBL height equation

<u>UNSTABLE stratification</u> – deep, non-rotational, well-mixed, ever-growing convective layers

- •PBL growth-rate
 - Buoyancy-budget models: prescribed entrainment
- •Variable entrainment (PBL ventilation)

Buoyancy- and energy-budget models: modelled entrainment

Different types of PBL

Earth's rotation

Different types of PBL

Classification by sign of surface buoyancy flux B_s

Stable $B_s < 0$ Neutral $B_s = 0$ Unstable (convective) $B_s > 0$

disregards free-flow Brunt-Väisälä frequency N (at z > h).

We account for \boldsymbol{N} and distinguish

Stable

nocturnal stable (NS) N = 0

long-lived stable (LS) N > 0

Neutral

truly neutral (TN) N = 0

<u>conventionally neutral</u> (CN) N > 0

Unstable <u>shear-free</u> (convective cells) in <u>two-layer fluid</u> N = 0

in stratified fluid N > 0

Unstable <u>sheared</u> (convective rolls)

in two-layer fluid N = 0

in stratified fluid N > 0

Stable and neutral PBLs

Ekman (1905) rotational PBL height scale $h_* = (K_* / |f|)^{1/2}$ $f = 2\Omega \sin \varphi$ is Coriolis parameter, K_* is eddy viscosity

$$\begin{bmatrix} \mathbf{L} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{S} \end{bmatrix} h_{E} = \begin{cases} C_{R}u_{*} |f|^{-1} & \text{TN PBL Earth rotation}(C_{R} = 0.6) \\ C_{CN}u_{T} |fN|^{-1/2} & \text{CN PBL free flow impact}(C_{CN} = 1.4) \\ C_{NS}u_{*}^{2} |fB_{S}|^{-1/2} & \text{NS PBL surface-flux impact}(C_{NS} = 0.5) \end{cases}$$

Baroclinic deepening (Z&E-2003) $u_T = u_* (1 + C_0 S_g / N)^{1/2}$ $S = dU_g/dz$ is geostrophic shear, $C_0 = 0.67$ (Z& Esau, 2003)

- CN and TN (R-M, 1935) were confused: strongly variable ratio $|f|h_E/u_* = C_N (f/N)^{1/2}$ was treated as constant (see Figure)
- NS (Z, 1972) widely accepted (data: over land at mid latitudes)

PBL shallowing due to free-flow stability

The effect of free-flow Brunt-Väisälä frequency N on the equilibrium CN PBL height h_E

PBL deepening due to baroclinic shear

Theoretical model $y = (1+0.67x)^{1/2}$ against LES (Zilitinkevich & Esau, 2003)

Diagnostic and prognostic formulations

The <u>equilibrium</u> height h_E of stable or neutral PBL is controlled by rotation (*f*) and stratification – at the bottom (B_s) and on top (N)

$$\frac{1}{h_E^2} = \frac{f^2}{(C_R u_*)^2} + \frac{N|f|}{(C_{CN} u_*)^2} + \frac{|fB_s|}{(C_{NS} u_*^2)^2}$$

Given h_E real PBL height *h* is determined by relaxation equation

Long-lived stable PBL

Very shallow long-lived stable PBL visualised by smoke in warm summer day over cold Lake Teletskoe, Altay, Russia, 28.08.2010

"Long-lived" stable PBL

Rising smoke in Lochcarron (Scottish Highlands) blocked within shallow PBL capped by strong temperature inversion. Photo by S/V Moonrise (Wikimedia).

Convective boundary layers

Turbulent kinetic energy (TKE) budget equation

Kinetic energy is generated convectively and mechanically

Shear-free regime:

when convective generation is much stronger than mechanical

Deardorff (1972) governing parameters: convective velocity scale: $W_* = (B_s h)^{1/3}$ similarity theory: $E_K / W_*^2 = \Phi_{EK} (z/h), \dots$

Eddy-viscosity scale $K_* = W_*h$ substituted into Ekman height scale $h_* = (K_*/|f|)^{1/2}$ yields $h_* \sim B_s^{1/2} / f^{3/2} \sim 30$ km much higher than atmospheric PBL height \rightarrow hence **ROTATION NEGLIGIBLE** \rightarrow convective PBL \neq Ekman layer

Convective boundary layers

TKE-budget

$$\frac{dE_{K}}{dt} = \mathbf{\tau} \cdot \frac{\partial \mathbf{u}}{\partial z} + B - \frac{\partial F}{\partial z} - \varepsilon$$

Kinetic energy is generated convectively and mechanically with generation rates B>0 and $\mathbf{\tau}\cdot\partial\mathbf{u}/\partial z$, respectively

<u>Shear-free regime</u>: when convective generation >> mechanical

Deardorff (1972) governing parameters: convective velocity scale: similarity theory: $E_K / W_*^2 = \Phi_{EK} (z / h), \dots$

Eddy-viscosity scale $K_* = W_*h$ substituted into Ekman height scale $h_* = (K_*/|f|)^{1/2}$ yields $h_* \sim B_s^{1/2} / f^{3/2} \sim 30$ km much higher than atmospheric PBL height \rightarrow hence **ROTATION NEGLIGIBLE** \rightarrow convective PBL \neq Ekman layer

The concept of well-mixed layer

Typically $B_s \sim 10^{-3} \text{ m}^2 \text{s}^{-3} \rightarrow \text{strong mixing} \rightarrow \text{buoyancy} (b)$, velocity (u, v), etc. are *z*-independent, except near-surface $(0 < z < \delta)$ and entrainment (h - l < z < h + l) layers \rightarrow almost linear vertical profiles of turbulent fluxes (*B*rand)

PBL-height buoyancy-budget models

Budget equation for mean buoyancy $b = (g/T)\theta + 0.61gq$ is composed of the

potential temperature (heta) and specific humidity (q) equations:

Taking the well-mixed-layer b(z) and B(z) and integrating over the PBL, yields bulk buoyancy equation with **TWO UNKNOWNS** h and Δb (o $B_h = -\Delta b\dot{h}$):

$$\frac{d}{dt}\left(\frac{1}{2}N^{2}h^{2} - h\Delta b\right) = B_{s}$$
No entrainment (Zubov, 1945; $B_{h} = 0$) \rightarrow encroachment model: $\dot{h} = \frac{B_{s}}{N^{2}h}$

<u>Given entrainment</u> (Betts/Carson/Tennekes, 1973: $A = -B_h/B_s = \text{constant}) \rightarrow$

$$\dot{h} = (1+2A) \frac{B_s}{N^2 h}$$

irrelevant at N=0 (in lab experiments $\dot{h} \approx 0.24W_*$)

used in Gryning-Batchvarova (1990,...) with A = 0.2

 $\frac{db}{dt} = -\frac{\partial B}{\partial z}$

Empirical data on $A = B_h/B_s$ (from Z, 1991)

Atmosphere	Laboratory	Lake	$A = B_h / B_s$
Koprov, Zwang 1965			0.35
Deardorff 1967			0.1 – 0.3
Lenschow, Johnson 1968			0.9
	Deardorff et al. 1969		0.12
Lenschow 1970			0.1
Deardorff 1972			0.1
Lenschow 1973			0 – 0.17
Stull 1976			< 0.1
Deardorff 1973			0.2
Carson 1973			0.25
Betts 1973			0.25
Calle, Weston 1973			0.25
Lenschow 1974			< 0.12
Perment Deadings 1074			< 0.1 0.25
Rayment, Readings 1974	Deardarff at al. 1074		0.23
Rotte 107/	Deardonn et al. 1974		0.23
Dello 1974	Willie Deardorff 1074		0.0
Cattle Weston 1075	Willis, Deardonn 1974		0.11 - 0.23 0.20 - 0.32
Calle, Weston 1975		Farmer 1975	0.23 - 0.32
	Heidt 1977	Tamler 1975	0.2
Yamamoto et al. 1077			0.10
	Kantha 1979		0.2
Coulman 1980			0.25
Dubosklard 1980			0.9
	Denton Wood 1981		0.2 - 0.5
Driedonks, Tennekes 1984			0.2

Shear-free convection in laboratory

A snapshot of the convection layer in laboratory experiment Earth, Atmospheric & Planetary Sciences Project, MIT, 2008

http://paoc.mit.edu/labguide/convect_atm.html

Lab entrainment TKE-budget model (Z-91)

Two unknowns in bulk buoyancy-budget equation:

PBL <u>height</u> h, and the buoyancy increment due

to entrainment Δb or **entrainment coefficient**

$$\frac{d}{dt} \left(\frac{1}{2} N^2 h^2 - h \Delta b \right) = B_s$$
$$A = \frac{\dot{h} \Delta b}{B}$$

Z (1975) closed the problem employing **bulk TKE-budget** equation and solved it (1987) for <u>"laboratory" shear-free</u> PBL growing against linear stratification accounting for energy consumption for exciting internal gravity waves at z > h

$$A + C_3 \operatorname{Ri}^{3/2} \left(\frac{A}{1+A}\right)^3 = C_1 - C_2 E$$
$$E = \dot{h} / W_* \text{ and } \operatorname{Ri} = \frac{1}{2} \left(Nh / W_*\right)^2 \text{ are Richardson number}$$

 $C_1 = 0.2, C_2 = 0.8, C_3 = 0.1$ are empirical constants (Z, 1991)

Lab entrainment TKE-budget model (Z-91)

TKE-budget in **shear-free convection** (laboratory)

$$\frac{dE_{K}}{dt} = B - \frac{\partial F}{\partial z} - \varepsilon$$

<u>Deardorff similarity</u>: $E_{K} = W_{*}^{2} \Phi_{EK}(\zeta)$, $\mathcal{E} = (W_{*}^{3} / h) \Phi_{c}(\zeta)$ where $\zeta = z / h$ $B = B_{c}(1-\zeta) + B_{L}\zeta$ <u>Well-mixed layer buoyancy-flux profile:</u> Integration over PBL \rightarrow Internal-Gravity-Wave energy flux: $F_{h+0} \propto \lambda^2 \Lambda N^3$ <u>IGW length and amplitude</u>: $\Lambda \sim \lambda \sim l = \frac{A}{1+A}h$, *l* entrainment-layer depth $\frac{d}{dt} \left| W_*^2 \left(\text{Ri} - \frac{A}{E} \right) \right| = B_s \left| A + C_3 \text{Ri}^{3/2} \left(\frac{A}{1+A} \right)^3 \right| = C_1 - C_2 E$ SOLUTION $A = \frac{\dot{h}\Delta b}{P} \left| \begin{array}{c} \text{Expansion} \\ \text{rate} \end{array} \right| E = \dot{h} / W_* \quad \text{Ri} \\ \text{number} \quad \left| \begin{array}{c} \text{Ri} = \frac{1}{2} \left(Nh / W_* \right)^2 \right| \\ \end{array} \right|$ Entrainment l coefficient B_{L} Empirical constants from lab experiments: $C_1 = 0.2, C_2 = 0.8, C_3 = 0.1$

Validation against lab-experiment data

 Ri_2

Entrainment coefficient $A = B_h/B_s$ versus $Ri_2 = \frac{1}{2}(Nh/W_*)^2$ in Deardorff et al. (1980) laboratory experiments with shear-free convective layers evolving against linearly stratified fluid (black circles) and two-layer fluid (open circles). Theoretical curve shows TKE-budget entrainment model Z (1987, 1991) with $C_1 = 0.2$, $C_2 = 0.8$, $C_3 = 0.1$.

Organised rolls in sheared convection

Self-organised rolls stretched along mean wind occupy the entire PBL (0 < z < h)with distance between rolls of order 2h.

<u>Updraughts</u> <u>excite IGW with</u> <u>wave length</u> <u>typically</u> $\sim 2h$ <u>in the stably</u> <u>stratified free</u> <u>atmosphere</u>

Cloud streets visualise updraughts in convective rolls Photo by Mick Petroff, Queensland, North Coast, Australia (Wikimedia Commons)

Conclusions

Stable / neutral layersHeights from dozens to hundreds mWeakly mixed, strongly affected by the free-flow stratificationLS and CN layers typical of Polar, marine, coastal atmosphereShallow Polar and sub-Polar PBLs AMPLIFY GLOBAL WARMINGShallow LS PBLs control heavy air-pollution episodes

Convective layers Heights up to 3-5 km, variable entrainment Organised cells/rolls $W_* = (B_s h)^{1/3}$ ENHANCE HEAT/MASS TRANSFER Over open waters in Polar Ocean (especially polynias and leads) In Tropics, e.g. over "Warm Pool Area" Strongly variable turbulent entrainment $0 < A = -B_h / B_s < 1$ A controls cumulus clouds (Knight et al., 2007), which causes

strong climate sensitivity to A (currently given constant = 0,2)

Challenge Operational modelling and monitoring PBL height

PBL height and air quality

Project "Information System for Management of Air Quality", ENEA, Italy, 2008-2010

The evolution of convective boundary layer

Earth, Atmospheric and Planetary Sciences Project, MIT, 2008

http://paoc.mit.edu/labguide/convect_atm.html

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Thank you for your attention

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

