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Aerosol dynamics

- Nucleation
- Condensation/Evaporation
- Coagulation
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Mass flux along the size spectrum

i

small Particle dimension

(Twomey, 1977)
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Dynamics general equation
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Nucleation
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Nucleation

s Phase transformation of substances from
the gaseous to the liquid or solid phase

s In 1897/ first evidences of particle
formation in the atmosphere, but only
around 2000 instrumentation to
guantitatively measure it appeared




Nucleation

s Phase transformation of substances from
the gaseous to the liquid or solid phase

s In 1897/ first evidences of particle
formation in the atmosphere, but only
around 2000 instrumentation to
guantitatively measure it appeared

= [wo important phases in the new particle
formation: the nucleation itself, and the
growth in dimention to a size that can be
observed




VWhere were new particles
observed?

“¢— Close to forests
In coastal reglons

In |ndustr|al réglons

Kulmala et al., 2008




Particle formation takes place:
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Particle formation takes place:

DN wilala 990

s During daytime,
suggesting that
photochemistry
plays an important
role

1000
dNfdogD._[1fem’

= In presence of only
a few pre-existent
particles
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= In presence of a
arge source of
Drecursor vapour,
photochemical or

of biogenic origin o

s Sometimes at low
temperatures




VWhat Is the formation rate of new
particles in the atmosphere?

= At regional scale tipically: 0.01-10
cm>st
= Up to 100 cm3st in urban areas

= Up to 10%-10> cm>st in coastal
zones and industrial plumes




Nucleation types

e Nucleation of a single species
(homogeneous-homomolecular)

e Nucleation of two or more species oo
(homogeneous-heteromolecular)




Nucleation types

e Nucleation of a single species
(homogeneous-homomolecular)

e Nucleation of two or more species oo
(homogeneous-heteromolecular)

e Nucleation of a single species onto "
another substance (heterogeneous-
homomolecular)

e Nucleation of two or more species onto
another substance (heterogeneous- ‘g
heteromolecular)




Nucleation mechanism

s \V/apour A at saturation

RSN A

molecule= cluster
monomers

mean cluster concentration is stable
presence of larger clusters is rare




Nucleation mechanism

s \V/apour A at supersaturation

o—oo—eqp—@ — o
there is an excess of monomers
compared to saturation

a larger number of larger clusters is
produced

some may then grow beyond a certain
critical dimension to give rise to a new
phase




Classical theory of homogeneous
nucleation

s It solves a set of equations for the
cluster concentration (N(t)) of different
dimensions

dn,
dt

= BN, (t) — y;N,(t) - BN, (t) + 7, N, .(E)

f : costant for collision of a monomer with the cluster
v: costant for evaporation of a monomer from a cluster




The suspected couple: H,SO,-H,0

s Sulphuric acid and water constitute
the cluster A
»

pure sulfuric acid water
Koo = 102,100 1 small stabilization

s Other compounds stabilise them and
make them grow

Kerminen et al., 2010




Measured characteristics

of the couple

= Binary nucleation

taking place most of all in free troposphere and in
industrial plumes,...)

Measured formation rate vs sulphuric acid (Brus et al. 2010)
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Measured and calculated

nucleation rates for H,SO,-H,0
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VWhy we do not understand the

mechanism yet

Critical clusters are too small and cannot
be measured

We cannot measure directly the nucleation
rate, but only a “formation” rate of
particles with larger diameters

Theoretically we derive a relation between
nucleation rate of cluster and the
“formation” rate of measurable particles

Observable
Cluster, not observable particle

. increase of dimension ‘
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How can we then include
a reasonable nucleation scheme in models?




Formation rate of particles measured in different environment
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x» Formulation of candidate mechanisms
for particle formation:

J» = A[H2504], 4)
J» = K [H2S04]%, (5)

Jr=Age [NucOrg] . (6)

Jry= Koz [NucO:g]2 : (7
Jr= Aq [HaSO4]+ Acr [NllCOfg] . (8)
J2 = Kper [H2S02] x [NucOrg]. (9)

Jr= Kz [HQSO.;]2 + K522 [H2S04] x [NllcOrg] . (10)

J» = K51 [H2S04]° + K52 [H2804] x [NucOrg]
+K: [NucOrg]2 .

None works in
all tested environments!

Mechanisms different
depending on the
conditions!

Large uncertainties
in observations




Nucleation: take-home message

s Particle formation is important
because it

e Influences particle number in atmosphere

e Increases number of CCN, therefore
Influences climate

s [t is present in many parts of the
globe

= [he principal mechanism of formation
is still poorly understood




Coagulation




Coagulation

s [t is the process by which particles
collide among them due to their
relative motion and adhere to form a
larger particle
e Thermal coagulation — brownian motion

e Cinematic coagulation — external
actions: gravity, electric forces,
aerodynamical effects




Brownian coagulation

Brownian motion = irregular motion of a particle in the steady
air, caused by random variations in the continuous bombing of
the gas molecules against particle




Brownian coagulation

Brownian motion = irregular motion of a particle in the steady
air, caused by random variations in the continuous bombing of
the gas molecules against particle

n(r,),n(r,) = number concentration of particles with radius
randr,
K, , = coagulation coefficient




Coagulation coefficient

\D,

D = diffusion coefficient of particles

B = Fuchs’ correction factor

K depends on temperature, air viscosity, particle
mean thermal, particle radius and mass, ...




Coagulation coefficient

s Symmetric matrix

= Minimum values along
the diagonal line

x Maximum values for

coagulation of a very
small particle with a
very large one

10 nm 100 nm 1 WUm
radius




How does coagulation affect
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... and effects on number size
distribution?

Hinds, 1982




Coagulation: take-nome message

s [t is the process that determines the
mass flux from smaller dimensions to

larger ones

s [t is important in high particle
concentration conditions and in
presence of a distribution spanning
on a large dimension range

s It is @ source of particles of mixed
chemical composition
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Condensation regimes

r < mean molecular path

Particle grow is determined by the rate

of random collisions with the gas molecules
(cinetic regime)




Condensation regimes

r < mean molecular path

Particle grow is determined by the rate

of random collisions with the gas molecules
(cinetic regime)

r > mean molecular path

Particle grow is determined by the rate
of gas molecule diffusion to the particle
surface

(continuous regime)




Condensation regimes

r < mean molecular path

Particle grow is determined by the rate

of random collisions with the gas molecules
(cinetic regime)

r > mean molecular path

Particle grow is determined by the rate
of gas molecule diffusione to the particle
surface

(continuous regime)

s If the particle is not in equilibrium with
the surrounding gas, a mass flux
between the particle and the gas starts




How do we model condensation
(evaporation) to a particle?

s [he flux of a gas that condenses on a
particle of radius r (for both kinetic and
continuous regimes):

am _ -
dat




How do we model condensation
(evaporation) to a particle?

s [he flux of a gas that condenses on a
particle of radius r (for both kinetic and
continuous regimes):

molecular diffusion coefficient
molecular thermal velocity

can be the molecular mean path
particle radius

accomodation coefficient (0=a=<1)
gas concentration

gas concentration at particle surface

m

D
v
A

ONR =
8




Accomodation coefficient a,
a troublemaker beast

 a=1
® o=0.03

0.01 0.1 1 10 100

radius (Wm)




Condensation of sulphuric acid
(H,S0,), effect on size distribution

1.E+05

=
CJ
> 1.E-03
S
T
2
©

0.01 0.1 1

radius (Um)

—&®—initial —8—1hour A 5hour =10 hour




Nucleation and condensation
are competing guys
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Nucleation and condensation
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Nucleation without pre-existing
pre-existing particles

particles

Nucleation is less efficient!!!
Condensation subtracts gas




Let's build a
O-dimensional
aerosol model

0-D spatial, time is the only

dimension
)|




Our problem

s [rasformation of particles emetted
by a car in a street:

e Which is the role of coagulation in the
plume emetted by a vehicle?

Vignati et al., 1999




Our problem

s [rasformation of particles emetted
by a car in a street:

e Which is the role of coagulation in the
plume emetted by a vehicle?

Air and particles present in the background

At CNDURON. S

Vignati et al., 1999 S= plume section




T'he particle we have to model

‘ = soot ’ = condensed HC/SO,

= nucleation mode ‘ = imbedded metallic ash

Fig. 1. Artist’s conception of diesel PM.

Matti Maricq, 2007




How do we construct the model?

. Our particles are supposed to be
spheres

. We do not have restriction for
computer time > sectional model




How do we construct the model?

3. Description of particle distribution
Radius(i)=0.001*100x0-1) j=1 46
4. Initial conditions for the particles
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How do we construct the model?

3. Description of particle distribution
Radius(i)=0.001*100x0-1) j=1 46
4. Inizial conditions for the particles

3.




Processes to be modelled

= Coagulation

s Diluition of the car plume from
the exhaust

= Entrainment of background
particles already present in the
street




6. We write the governing equation

= particle number in class i

= production of particles in classe i due to coagulation
= loss of particles in class i due to coagulation

Ny, = background particle number concentration

S = plume section

N.
P
L

7. We solve it numerically

s. We look at the results....




and We have a surprise

s Coagulation alone does not have any
effect

s [he resulting size distribution is
dominated by entrained background
particles




Aerosol dynamics In
3-D

3-D spatial (%, vy, z)
and time z 4




Nucleation schemes make

a difference!

Particle concentrations in USA, with a regional model and nucl. sch.

FASE - Parwis of o (1990) | PV . Fitgemehd of ol (199%) U MRS . Harrimgen sad Krewdeseoh (199 KL Kahade of al (1995, ]

——— "N , J
- *': ) .. } t‘ \J {“;J
- - ’ "~ ’ k'l‘- -
- , i ‘ol

e

-——

’ |

" 2! ; / >
b ) r.
3 . - ".\'. ol :
' , ' ]
r W _ Y }
. ., . AT S A -
2y y . : s . 1 .
‘ : - e : , i
b N—— o -' ' i e— ' — &
" " ' .

|

SRS S ey 1 M I A e I A R | NN e ) i e L
YEO2 - ehdamnnkl ot ol 12002y | LSBT | SN2 - Napari ot Wl (Ivaly | NERT - Shvrihawe ot . 2T
g N T T LR
\’ \ N | 7§ 3J 19 >
- » ’ 4 : lh -
e B e & 1}
T o A
8, 0 GRS -
‘v a ‘. - . L y
\l g3 ..‘ < '.| - ) ’

. e A ey ‘o AR e e U

Vies Ve due SI0A - S ot ol (Dima)

Logaritmic scalel!l!ll |




Trasport of Black Carbon to the

B»Soot

Poles %
s Produced by incomplete ®LT

compustion of fossil fuels

s [t absorbes solar radiation fwarming
the atmosphere

s Depositated on snow it favours the
snow warming and caused its rapid
melting




VWhich aerosol chemical
composition and size distribution?

= \We have a 3-D global chemistry
transport model

x \We need to include all compounds

important for the global scale:

black carbon, organic carbon, sea salt,
dust, sulphate - large computer time!




VWhich aerosol chemical
composition and size distribution?

= \We have a 3-D global chemistry
transport model

x \We need to include all compounds

important for the global scale:

black carbon, organic carbon, sea salt,
dust, sulphate - large computer time!

Modal model is the best
choice




IS dynamics necessary?

N without dinamics JAVR i K1 ET1 o0 observations
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Emissions




Sources

Primary particles Black carbon Precursours  SO2, DMS
Organic Carbon NOX

Sea salt NH3
Dust VOCs

/vm

== \\[5 actions

N\, Gas-to-particle




Black carbon

~ 3 1gC yr-1

= Anthropogenic sources (fossil
and biofuels):

~ 5.4 TgC yr-1

p) Domestic use

By Road transport

c) Industry

Uncertainty of a factor of 2




Organic Carbon

~ 34.7 Tg yr-1

= Anthropogenic sources (fossilg
and biofuels):

~ 19.1 Tg yr-1

p) Domestic use

By Road transport

c) Industry

Uncertainty of a factor of 2




Sea Salt

Mechanism of production

Air entrainment

Bubble bursting

(Schwarz and Lewis, 2004)




Sea spray source functions for wind speed 8 mis
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s Mechanism of production: soil
deflation from bare surface when
wind exceeds a certain threshold




s Mechanism of production: soil
deflation from bare surface when
wind exceeds a certain threshold

s from dust potential sources (using
vegetation maps, dust grain types,
low surface roughness,...)

. o S
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=

e R g :
L ] § :

Tegen et al., 2002




Still' quite uncertaint

s High uncertainties: too few data that
can constrain the modelled emissions

> — e

(published range 430-3000 Tg y 1)

(Tegen et al, 2002)
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