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INTRODUCTION

The reduction of the structural compliance of thin walled beams, plates and shells is
often the primary concern in the engineering mechanics. The need for reduction of
the compliance and the increase of the structural stiffness is related to the use of light-
weight structures which are less material consuming than the traditional structures.

It is wellknown that the structural material is used in more efficient manner and
the ratio of the strength to weight is larger if inelastic deformations are taken into
account when designing the structure. Although the early results of the behaviour of
elastic plastic circular and annular plates have obtained a long ago by Naghdi [28],
Hodge (1960), Tekinalp (1956) the most of the attention is paid to plates of constant
thickness only. Comprehensive reviews of these investigations can be found in the
books by Chakrabarty [7], Cohn [8], Kaliszky [13], Save, Massonnet, Saxce [34],
Yu, Zhang [44]. Hodge introduced an essential simplification of inelastic problems
in the case of a Tresca material making use of the yield surface consisting of two
hexagons on the planes of moments and membrane forces, respectively. It was used
by many investigators for getting approximate solutions. Among others, Sherbourne,
Srivastava [36] found an analytical solution to the elastic plastic bending problem in
the range of large deflections.

The exact analysis of elastic plastic plates is quite complicated. This involves
the need for physically reasonable simplifications. An effective simplification is in-
troduced by Haythornthwaite (1955) and Tekinalp (1956, 1957). Haythornthwaite
suggested to assume that any plate element is either entirely elastic or entirely plas-
tic. This assumption is fulfilled in the case of a sandwich plate consisting of two
carrying layers and of a core material between the rims. Haythornthwaite (1955)
investigated the elastic plastic bending of an annular plate loaded by the central ab-
solutely rigid boss. The plate is clamped to the boss at the inner edge and simply
supported at the outer edge. An exact theoretical solution is derived for a plate made
of a Tresca material.

Tekinalp (1956) studied the circular plate simply supported at the edge and sub-
jected to the uniformly distributed transverse pressure. The solution for a plate
clamped at the outer edge was obtained a little later Tekinalp [38]. The solutions
in both cases consist of the initial elastic stage and several subsequent elastic plastic
stages of deformation.

The complete elastic plastic analysis of centrally clamped annular plates carrying
uniformly distributed transverse loading was undertaken by French [10] within the
frame works of the pure bending theory of thin plates. Exact stress profiles lying
partly inside and partly on the yield hexagon are developed for the elastic and elastic
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plastic stages of the deformation. It is assumed by French [10] that the plate is a
sandwich construction and that the material of carrying layers obeys the Tresca yield
condition. The elastic plastic bending of circular and annular plates made of a Tresca
material was also studied by Hodge (1960, 1968).

Elastic plastic deformations of axisymmetric plates made of a von Mises mate-
rial are investigated by Eason [9], Sokolovski (), Lackman (1964), Popov et al (1967),
Turvey (1979), Turvey and Lim (1984), Turvey and Salehi (1991), Ohashi and Mu-
rakami (1964).

The classical concept of an elastic plastic body admits the exact definition of
yielding and of the yield-point load. It is shown earlier by Tekinalp (1956), Hodge
(1960) and others that in the case of the Tresca material and a plate subjected to the
uniformly distributed transverse pressure of intensity p the onset of yielding corre-

sponds to the values of the pressure p =
16M0

R2(3 + ν)
and p =

8M0

R2
for simply sup-

ported and clamped plates, respectively. Here ν is the Poisson ratio, R and M0

stand for the radius of the plate and the yield moment of the material, respectively.
The concept of gradual yielding introduced by Richard and Abbott (1975) for one-
dimensional structures was extended to circular and annular plates by Upadastra,
Peddieson, Buchanan (2006) and Khalili, Peddieson (2013).

Elastic plastic bending of axisymmetric plates in the range of large deflections
was investigated by Ohashi, Murakami, Endo (1967), Sherbourne and Srivastava
(1971), also Gorji and Akileh (1990), Turvey (1978). Stress and strain distribu-
tions in rotating disks made of a Tresca material are determined by Güven (1992)
and Gamer (1985). In the cited papers solid and sandwich plates and rotating disks
are investigated assuming that the material is an ideal elastic plastic material with-
out strain hardening. Plates made of a hardening material were studied by Boyce
(1959), Hwang (1960), Tanaka (1972). Wen (1998), Kirs, Kenk (1990) considered
work-hardening circular plates subjected to dynamic loading under different circum-
stancies.

The use of the classical bending theory based on Kirchhoff hypotheses is justified
in the case of thin plates and homogeneous materials. In more complicated cases
the shear stresses must be taken into account as shown by Oblak (1986), Nagai and
Ito (1991). Sawczuk and Puszck (1963) developed similar concept for ideal plastic
plates.

Reddy and Wang (1997) investigated relationships between the classical pure
bending theory and the shear deformation theory applied to the bending of circular
and annular plate. The full discription of the shear deformation theory of plates and
shells can be found in the book by Wang, Reddy, Lee (2009).

One of the ways of increasing the stiffness of beams, plates and shells is to furnish
these structural elements with additional supports. Evidently, it is reasonable to settle
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these supports at the optimal positions.
The problem of minimization of the compliance of elastic beams and the determi-

nation of the optimal location of the additional support was first formulated by Mroz
and Rozvany [27]. In paper Mroz and Rozvany [27] designs of minimumcompliance
of beams are established in the case of quasistatic loading. Later Szelag and Mroz
[37], Akesson and Olhoff [1] treated the problems of maximal eigenfrequency for
given stiffness with respect to the location of the additional support. Bojczuk and
Mroz [4] developed a new method for simultaneous optimization of topology, con-
figuration and cross-sectional dimensions of elastic beams and beam structures ex-
tending earlier results by Garstecki and Mroz [11], Mroz and Lekszycki [27], also by
Lepik [26]. In the subsequent papers by Bojczuk and Mroz [5] this concept was ap-
plied for optimal design of active supports with force actuators. Olhoff and Akesson
[29] treated the stability of columns and Wang et al [42] studied the buckling of ax-
isymmetric plates.

A lot of attention has been paid in the literature to the optimization of internal
supports to beam, plate and shell structures in the case of inelastic materials. Probably
the first paper in this area is due to Prager and Rozvany [31]. Systematic reviews of
results obtained in earlier papers are presented by Rozvany [33], also by Lellep and
Lepik [18]. Optimal designs of circular cylindrical shells with additional supports
are established by Lellep [14, 17] in the case of dynamic loading and an ideal plastic
material. The behaviour of geometrically non-linear cylindrical shells with internal
supports is studied in [16, 15, 17, 19].

Optimal designs of axisymmetric plates and shells of various shape made of elas-
tic and inelastic materials are established in [22, 23, 24, 25]. Inelastic spherical and
conical shells are studied in [23, 24, 25] whereas a stress strain analysis of an annular
plate made of an elastic plastic material is presented in [21].

A design sensitivity analysis for the deflection of beam or plate structures was
undertaken by Wang [43] in the case of simple supports located at given mesh nodes.
Stiffened sector plates are studied in [39].

In the present work an analytical method of determination of positions of rigid
ring supports for circular plates is developed. The analysis is confied to the axisym-
metric response of elastic plates to subjected loads.

Plates and shells are widely used in various fields of technology and engineer-
ing. The behaviour of plates and shells in the range of elastic deformations has been
studied by many authors (see [32]; [41]; [40]).

The practical need for light weight structures has increased the importance of
investigations of composite materials, also sandwich plates and shells and of these
manufractured from composites. The foundations of the analysis and design of sand-
wich structures was developed by Allen [2] and Plantema [30]. The stability problem
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of a three-layered plate with a soft core was solved by Pawlus []. The critical loads are
obtained analytically and numerically. Elastic circular sandwich plates subjected to
the ring load have studied by Magnucki, Jasion et al (2014). The comparison of the
analytical, numerical and experimental results reveals small discrepancies between
theoretical predictions and experimental data. These are probably due to the approx-
imate determination of the mechanical properties of the core material. The influence
of shear forces on the bending of circular plates was studied by Reddy, Wang (1997).

There exists a large number of books dedicated to the foundations of composite
materials. It is worthwhile to mention among others the books by Herakovich (1998),
Jones (1999).

In the present work the elastic plastic bending of annular plates of piecewise
constant thickness is studied. It is assumed that the material of the plate clamped at
the inner edge is an ideal plastic one obeying the square yield condition.
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CHAPTER 1
BASIC EQUATIONS AND CONCEPTS

In this chapter the governing equations for thin plates are prsented. This system
of equations consists of the equations of equilibrium and of the physical relations
for elastic and plastic regions for the thin-walled circular and annular plates will be
presented. For the sake of simplicity a thin-walled plate with constant thickness is
considered.

1.1 Equations of equilibrium

We consider axisymmetric deformations of a circular plate subjected to the axisym-
metric transverse loading of intensity P = P (r). Here r is the current radius e. g. the
distance from the center of the plate. As we are studying the axisymmetric response
of the plate all points lying at the circle with radius r have common displacements
W (r) in the transverse direction as well as common deformations and curvatures κ1,
κ2 in the radial and circumferential directions, respectively. Note that the radial dis-
placement will be neglected in the present study since the classical equations of the
bending theory of thin plates will be used.

In the present study we shall employ the linear theory of thin plates (see Reddy
[32], Vinson [41]). According to this approach one can treat the equilibrium of in-
ternal and external forces and couples on the basis of an undeformed element of the
plate. Let M1, M2 be the generalized couples called bending moments in the radial
and circumferential directions, respectively. Bending moments M1, M2 are the only
generalized stress components contributing to the internal energy. Note that the mem-
brane forces are assumed to be small so that one can neglect the membrane action of
internal forces. Although the shear force Q may be finite it does not contribute to
the internal energy in the classical plate theory. The reason is that the corresponding
strain component vanishes.

In the frameworks of the classical plate theory where axial symmetry is retained
the couplesM1,M2 with forcesQ and P form a system of forces and moments which
keep the element of the plate in equilibrium. The equilibrium conditions of the plate
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Prdrd

M
N

Q+dQ
dr

N

M

N

Q

d θ

M

M +dM

2

1

1

2

2

N +dN
11

2

11

z

r

θ

Figure 1.1: An element of the circular plate.

element presented in Fig. 1.1 can be written as

d

dr
(rN1)−N2 = 0,

d

dr
(rM1)−M2 − rQ = 0,

d

dr
(rQ) + P (r)r = 0.

(1.1)

Note that in the following the influence of membrane forcesN1,N2 will be neglected.
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1.2 Hooke’s law

If the material of the plate is an ideal elastic material the Hooke’s law holds good. In
the case of an isotropic elastic material The Hooke’s law reads

ε1 =
1

E
[σ1 − ν(σ2 + σ3)]; γ12 =

τ12
G

;

ε2 =
1

E
[σ2 − ν(σ1 + σ3)]; γ13 =

τ13
G

;

ε3 =
1

E
[σ3 − ν(σ1 + σ2)]; γ23 =

τ23
G
.

(1.2)

Here εj , γj (j = 1, 2, 3) stand for strain components whereas σj , τj (j = 1, 2, 3) are

stress components; E is the Young modulus, ν is Poisson ratio and G =
E

2(1 + ν)
.

In the case of plane stress state when ε3 = 0, τ23 = σ3 = 0 one has

ε1 =
1

E
(σ1 − νσ2),

ε2 =
1

E
(σ2 − νσ1),

γ12 =
τ12
G

(1.3)

or in the inverted form as

σ1 =
E

1− ν2
(ε1 + νε2),

σ2 =
E

1− ν2
(ε2 + νε1),

τ12 = Gγ12.

(1.4)

The strain components can be expressed via displacements u, v,w in the direction
of coordinate axes, respectively. Making use of polar coordinates (now u is directed
in the radial direction and v in the circumferential direction) one has

ε1 =
∂u

dr
,

ε2 =
u

r
+

1

r

∂v

∂Θ
,

γ12 =
∂v

∂r
− v

r
+

1

r

∂u

∂Θ
.

(1.5)
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In the case axisymmetric loading it is expected that the stress-strain state is also
axisymmetric, provided the boundary conditions at the edges of the plate are axisym-
metric. Now the displacements do not depend on the polar angle Θ and one has

ε1 =
du

dr
,

ε2 =
u

r
,

γ12 =
dv

dr
− v

r
.

(1.6)

According to Kirchhoff hypotheses one has (see Reddy [32], Vinson [41])

ε1 = zκ1,

ε2 = zκ2

(1.7)

where z is the distance between a current point and the middle surface of the plate.
Principal curvatures κ1, κ2 can be expressed as

κ1 = −d
2W

dr2
,

κ2 = −1

r

dW

dr

(1.8)

where W is the transverse deflection or displacement in the z-axis of points lying on
the middle surface.

Let us introduce the generalized stresses (bending moments)

M1 =

∫ h
2

−h
2

σ1zdz,

M2 =

∫ h
2

−h
2

σ2zdz,

M12 =

∫ h
2

−h
2

τ12zdz

(1.9)

and the shear force

Q =

∫ h
2

−h
2

τ13dz. (1.10)

Substituting equations (1.4) with (1.7), (1.8) in (1.9) after integration one has

M1 = D(κ1 + νκ2),

M2 = D(κ2 + νκ1)
(1.11)
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where

D =
Eh3

12(1− ν2)
(1.12)

in the case of a solid plate and

D =
EhH2

2(1− ν2)
(1.13)

in the case of a sandwich plate. In (1.13) H stands for the total thickness and h is the
thickness of carrying layers.

The stress strain state is determined according to equations (1.1). Substituting
equations (1.11), (1.8) in formula (1.1) leads to a fourth order equation with respect
to the deflection W known from the theory of elastic plates (see Reddy [32], Vinson
[41]; Ventsel, Krauthammer [40])

1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dW

dr

)]}
=
P (r)

D
. (1.14)

The general solution of this equation can be presented in the case P = const as

W =
Pr4

64D
+A1r

2 ln r +A2r
2 +A3 ln r +A4 (1.15)

where A1 – A4 are the integration constants.

1.3 Yield criteria

The theories of plasticity are based on experimental observations regarding the be-
haviour of inelastic materials. The experiments show that a rod in a simple tension
test remains elastic until the stress does not exceed a limit value, called the yield stress
σ0. In this thesis it is assumed that the stress strain curve can be approximated by two
straight lines shown in Fig. 1.2. Thus, according to this model a one-dimensional
body (a rod under tension) remains elastic if |σ| < σ0.

However, in the general case the stress state of a material element can be rep-
resented by a point in a nine-dimensional stress space with coordinates σij (i, j =
1, 2, 3). Theoretical considerations and experimental investigations show that around
the origin of the stress space there exists a closed convex surface

Φ0(σ11, σ12, . . . , σ33) = 0 (1.16)

surrounding the region where elastic deformations take place. The points lying on
this surface correspond to the points of the body where plastic deformations occur.
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σ

ɛ

σ0

‒σ0

Figure 1.2: The stress-strain curve.

In the case of axisymmetric thin-walled plates the yield surface (1.16) can be
expressed via bending moments as

Φ(M1,M2,M0) = 0 (1.17)

where M0 stands for the yield moment. Evidently

M0 =
σ0h

2

4
(1.18)

for solid plates and
M0 = σ0hH (1.19)

for sandwich plates.
The most often used yield conditions are the Tresca (Fig. 1.3) and Mises (Fig. 1.4)

conditions.

1.4 Associated flow rule

In the general case the yield criterion Φ ≤ 0 holds good. In an elastic region one has
Φ < 0 and in a plastic region Φ = 0. In the theory of plasticity it is shown that in a
plastic region of a body where Φ = 0 the strain rate vector ~̇ε is directed outwards the
yield surface (see Chakrabarty [7], Kaliszky [13]; Sawczuk, Sokól-Supel [35]). Thus

ε̇ij =
λ∂Φ0

∂σij
(1.20)
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Figure 1.3: Tresca’s yield hexagon.

M1
M0

M2
M0

Figure 1.4: Von Mises yield ellipse.

for i, j = 1, 2, 3. In equation (1.20) λ stands for a non-negative scalar multiplier and
the dot denotes the derivative with respect to time. Using the generalized stresses and
the yield surface in the form (1.17) one has

κ̇1 =
λ∂Φ

∂M1
,

κ̇2 =
λ∂Φ

∂M2

(1.21)
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where κ1, κ2 stand for the curvatures.
At the non-regular points of the yield surface the strain rate vector is formed as

a linear combination with unknown coefficients of outward normals to the adjacent
portions of the yield surface.

Note that in the ”deformation theory” of plasticity instead of strain rate the strain
components themselves are used.

Let us consider the case when the behaviour of the material in plastic stage corre-
sponds to Tresca’s yield condition (Fig. 1.3) and to associated gradientality law in a
greater detail. The latter means that if the stress point is lying at an edge of Tresca’s
hexagon then the vector of curvatures with components (1.8) is directed towards the
external normal to the edge. It will be shown that in the case of a circular plate sub-
jected to unidirectional transverse loading the yield regime M2 = M0 takes place,
where M0 stands for the yield moment.

If the stress state of the plate corresponds to an internal point of the side BC of
the yield hexagon, then according to the gradientality law κ̇1 = 0, κ̇2 ≥ 0. Thus

d2Ẇ

dr2
= 0 (1.22)

in this case. Making use of the deformation theory the general solution of the equa-
tion (1.22) can be presented as

W = Ar +B (1.23)

where A and B are the constants of integration.
If the stress strain state of the plate in certain region corresponds to a non-regular

point of the yield curve (for instance, the corner point B in Fig. 1.3), then the strain
rate vector lies inside the angle formed by external normals to crossing sides.

At the point B of the Tresca hexagon (Fig. 1.3) M1 = M2 = M0 and the associ-
ated yield law states that κ̇1 ≥ 0, κ̇2 ≥ 0. Thus the exact expressions of strain rates
remain unknown here.

Note that if the stress strain state corresponds to an interiour point of the yield
hexagon (Fig. 1.3) then the plate material remains elastic in this region and Hooke’s
law holds good.
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CHAPTER 2
BENDING OF ELASTIC PLASTIC CIRCULAR PLATES

2.1 Preliminaries and basic hypotheses

Let us consider the quasistatic behaviour of an elastic plastic circular plate of radius
R under the lateral pressure of intensity P = P (r), r being the current radius. It is
assumed that the plate is of sandwich-type consisting of carrying layers of thickness
h and of a core material between the rims. The thickness of the layer of the core
material is H . We assume that

h = hj , (2.1)

for r ∈ (aj , aj+1); j = 0, . . . , n. The quantities aj , hj are treated as preliminary
known parameters. For the sake of convenience we take a0 = 0; an+1 = R. The
response of the plate to the external loading will be prescribed by the classical plate
theory. The stress components contributing to the strain energy are the bending mo-
ments M1, M2 in the radial and hoop direction, respectively. Corresponding strain
components are the curvatures κ1, κ2 which can be determined via the transverse
deflection W = W (r).

It is assumed that the radial bending moment M1 as well as the shear force Q,
deflection W and slope dW/dr are continuous for each r ∈ (0, R). However, the de-
flection slope may have discontinuities at sections whereM1 = M0 (see Chakrabarty
(2006), Kachanov (), Yu Chang ()). It means that

[W (aj)] = 0,[
dW (aj)

dr

]
= 0,

[M1(aj)] = 0

(2.2)

and

(|M1(aj)| −M0)

[
dW (aj)

dr

]
= 0. (2.3)

The aim of this chapter is to determine the stress strain state of the plate for the
initial elastic and subsequent elastic plastic stages of loading.
If the load intensity is high enough plastic deformations occur in certain regions.
Now the plate is divided into elastic and plastic regions. Let us denote these regions
Se and Sp, respectively. In a plastic region the stress state corresponds to a point
lying on the yield surface (or a yield curve). It is assumed that the yield condition can
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be presented by the diamond ABCD shown in Fig. 2.2. Here M0j denotes the yield
moment. In the case of a sandwich plate with the rim thickness hj

M0j = σ0hjH, (2.4)

σ0 being the yield stress of the material. Since M1 ≥ 0, M2 ≥ 0 in the most cases
one can assume that in the plastic region

M1 +M2 = M0j (2.5)
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for r ∈ (aj , aj+1). Note that the diamond yield condition was suggested by Jones
[3] for approximate solution of dynamic problems of plastic plates.

According to the associate flow law on the side AB of the diamond one has
κ̇1 = κ̇2 where dots denote the differention with time or a time-like parameter.
Making use of (1.8) and the deformation-type theory of plasticity the gradientality
law results in the equation

d2W

dr2
− 1

r

dW

dr
= 0. (2.6)

2.2 Integration of governing equations in elastic regions

Assume that the portion of the plate for r ∈ (aj , aj+1) is in pure elastic stress-strain
state. For determination of stresses, strains and displacement one has the equations
(1.1)–(1.11). Substituting (1.11) with the help of (1.8) in the equilibrium equations
(1.1) results in

1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dW

dr

)]}
=
P (r)

Dj
(2.7)

for r ∈ (aj , aj+1) and where

Dj =
EhjH

2

2(1− ν2)
. (2.8)

This is true under the condition that this intervalt belongs to the set Se.
One can easily recheck that the general solution of the equation (2.7) is

W = A1jr
2 ln r +A2jr

2 +A3j ln r +A4j +
Pr4

64Dj
(2.9)

where A1j −A4j are arbitrary constants.
Bending moments have the form

M1 = −Dj

{
Pr2(3 + ν)

16Dj
+A1j [2 ln r + 3 + ν(2 ln r + 1)]

+2A2j(1 + ν) +
A3j(ν − 1)

r2

}
,

M2 = −Dj

{
Pr2(1 + 3ν)

16Dj
+A1j [2 ln r + 1 + ν(2 ln r + 3)]

+2A2j(1 + ν) +
A3j(1− ν)

r2

}
.

(2.10)
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2.3 Elastic stage of deformation

In the case of smaller values of the intensity of the transverse pressure the plate
remains elastic. In the elastic stage the stress strain state of the plate is defined by
(2.9) and (2.10).

Let us consider now a particular case of the problem posed above when n = 1
and the thickness distribution is

h =

 h0, r ∈ [0, a]

h1, r ∈ [a,R].
(2.11)

Let the applied loading be of constant intensity. For the concreteness sake let us
assume that the plate is simply supported at the edge. Thus at the boundary of the
plate

M1(R) = 0,

W (R) = 0.
(2.12)

Here in (2.9) and (2.10) one has to take j = 0, if r ∈ [0, a] and j = 1, if
r ∈ [a,R].

Calculating the shear force for the elastic plate one reaches to the relation

Q =
1

r

(
d

dr
(rM1)−M2

)
. (2.13)

Substituting M1, M2 from (2.10) in (2.13) one can see that the shear force is contin-
ious all over the plate and thus constants A1j = 0.

Evidently, M1(0) must be finite. Thus it follows from (2.9) that A30 = 0. For
determination of the rest unknown constants A20, A40, A21, A31, A41, one can use
the boundary conditions (2.12) and the continuity requirements

[W (a)] = 0,

[M1(a)] = 0,[
dW (a)

dr

]
= 0.

(2.14)

Here and now on square brackets denote finite jumps of corresponding variables at
the given points. From the first equation in (2.12) one can express the constant

A21 =
−PR2(3 + ν)

32D1(1 + ν)
+
A31(1− ν)

2R2(1 + ν)
. (2.15)
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Substituting the constant A21 from equation (2.15) into the second equation in (2.12)
one can determine

A41 =
PR4(5 + ν)

64D1(1 + ν)
− A31[1− ν + 2(1 + ν) lnR]

2(1 + ν)
. (2.16)

Making use of the continuity of the bending moment M1 at r = a in (2.14) and
equation (2.15) one can express

A20 =
−PR2(3 + ν)

32D0(1 + ν)
+
A31D1(1− ν)(a2 −R2)

2D0(1 + ν)R2a2
. (2.17)

Substituting the constants A20, A21 and A41 into the first equation in (2.14) one can
obtain

A40

=
P [a4(1 + ν)(D0 −D1) +R4D0(5 + ν) + 2R2a2(3 + ν)(D1 −D0)]

64D0D1(1 + ν)

+
A31{(1− ν)[(R2 − a2)D1 + a2D0] +D0R

2[2(1 + ν)(ln a− lnR)− 1 + ν]}
2D0(1 + ν)R2

.

(2.18)
Finally, making use of equations (2.17), (2.15) and the third equation in (2.14) one
can express

A31 =
Pa2R2(D1 −D0)[a

2(1 + ν)−R2(3 + ν)]

16D1{D0[a2(1− ν) +R2(1 + ν)] +D1(ν − 1)(a2 −R2)}
. (2.19)

2.4 Optimization of elastic circular plate

2.5 Solution of governing equations in plastic region in the case of dia-
mond yield condition

In plastic region one has to satisfy the equations (2.5), (2.6) and the equilibrium
equations (1.1). Integrating (2.6) one easily obtains

W = Ar2 +B (2.20)

A and B being arbitrary constants. For determination of stress components one can
use equations (1.1) and (2.5). The second equation in system (1.1) gives after inte-
gration

Q = −1

r

∫
P (r)rdr + C1. (2.21)
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Figure 2.4: Bending moment a05Rg05.
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Figure 2.5: Circumferential moment a05Rg05.
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Figure 2.7: Bending moment a05Rg07.
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Figure 2.8: Circumferential moment a05Rg07.
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Table 2.1: Optimal values of parameters.
V0 α γ Wo W∗ e

0.45 0.490363 0.275881 4.38282 · 10−6 5.15278 · 10−6 0.85057
0.50 0.549226 0.284027 3.86136 · 10−6 4.6375 · 10−6 0.83264
0.55 0.605052 0.290123 3.46249 · 10−6 4.21591 · 10−6 0.82129
0.60 0.658147 0.294337 3.15763 · 10−6 3.86458 · 10−6 0.81707
0.65 0.708775 0.296677 2.92554 · 10−6 3.56731 · 10−6 0.82010
0.70 0.757151 0.296968 2.74998 · 10−6 3.3125 · 10−6 0.83018
0.75 0.803436 0.294764 2.61823 · 10−6 3.09167 · 10−6 0.84687
0.80 0.847728 0.289161 2.5201 · 10−6 2.89844 · 10−6 0.86947
0.85 0.890033 0.278294 2.44735 · 10−6 2.72794 · 10−6 0.89714
0.90 0.930189 0.257875 2.39317 · 10−6 2.57639 · 10−6 0.92888
0.95 0.967623 0.21513 2.35191 · 10−6 2.44079 · 10−6 0.96358
0.99 0.99431 0.118785 2.32495 · 10−6 2.34217 · 10−6 0.99265

It is worthwile to mention that the shear force must be continuous for r ∈ [0, R].
However, the function P = P (r) can be discontinuous. In the particular case when
P (r) = const instead of (2.21) one has for r ∈ [0, R]

Q = −Pr
2

(2.22)

where the symmetry Q(0) = 0 has taken into account.
Substitution of equations (2.5) and (2.21) in (1.1) leads to linear differential equa-

tion
dM1

dr
+

2M1

r
=
M0j

r
− 1

r

∫
Prdr + C1 (2.23)

for r ∈ (0, a). In order to find the general solution for equation (2.23) let us first
consider the corresponding homogeneous equation. Evidently, the general solution
of it has the form

Mh =
C

r2
. (2.24)

The method of variation of the constant in equations (2.23), (2.24) yields

C(r) =
M00r

2

2
−
∫ (

r · Pr
2

2

)
dr +

C1r

3
+ C2. (2.25)

Thus the radial bending moment in a plastic region (0, a) is defined as

M1 =
M00

2
− 1

r2

∫
Pr3

2
dr +

C1

3r
+
C2

r2
(2.26)
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Integration constants C1, C2 in equation (2.26) can be determined using the continu-
ity requirements of M1 at the boundary conditions. If, for instance, the plastic region
is located near the center of the plate for r ∈ [0, ηR] where η < 1 then evidently
C1 = C2 = 0. Otherwise the moment M1 is not limited. Thus in this case

M1 =
M00

2
− Pr2

8
. (2.27)

Here M00 denotes the limit moment for the portion of the plate with thickness h0.
The circumferential moment can be found according to equations (2.5), (2.27) as

M2 =
M00

2
+
Pr2

8
. (2.28)

2.6 Elastic plastic solution in the case of diamond condition

During the subsequent increasing the load intensity the plate is divided into elastic
and plastic regions. Plastic deformations occur in the central part of the plate with
radius y. However, the outward part of the plate remains elastic. The deflection in
elastic region is defined by equation (2.9) and moments by equation (2.10). Here one
has to take j = 0, if r ∈ [y,R].

In the central plastic region the stress profile lies on the yield curve. Principal
moments are defined by equations (2.27), (2.28).

For determination of the unknown constants A, B, A20, A30, A40 and y, one can
use the boundary conditions (2.12) and the continuity conditions at r = y

[W (y)] = 0,

[M1(y)] = 0,[
dW (y)

dr

]
= 0,

[M2(y)] = 0.

(2.29)

Making use of the second and forth continuity condition in system (2.29) one can
determine the constants

A20 = −Py
2(ν + 1) + 4M0

16D0(1 + ν)
(2.30)

and

A30 =
Py4(ν + 1)

16D0(ν − 1)
. (2.31)
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From the third continuity condition in system (2.29) one can express constant

A =
Py2(ν + 1)− 4M0

16D0(ν2 − 1)
. (2.32)

For determining the constant

A40 =
1

64D0(ν2 − 1)

{
4R2(ν − 1)[Py2(ν + 1) + 4M0]

−4(ν + 1)2y4P lnR− PR4(ν2 − 1)
} (2.33)

one can use the second boundary condition from equations (2.12). Making use of the
first continuity condition in system (2.29) one can find the constant

B =
Py4[(ν + 1) ln y − ν]

16D0(ν − 1)
+

1

64D0(ν2 − 1)

{
4R2(ν − 1)

·[Py2(ν + 1) + 4M0]− 4(ν + 1)2y4P lnR+ P (ν2 − 1)(y4 −R4)
}
.

(2.34)

Finally, for expressing the constant y one can substitute the constants A20 (2.30)and
A30 (2.31) into the first boundary condition from equations (2.12). This leads to the
equation

P (ν + 1)y4 − 2(ν + 1)PR2y2 − 8M0R
2 + PR4(3 + ν) = 0. (2.35)

It is easy to solve the biquadratic equation (2.35) and get the constant

y =

√√√√R2 ±

√
−2R2(PR2 − 4M0)

P (ν + 1)
. (2.36)

2.7 Elastic plastic bending of an annular plate

Elastic plastic deformations of an annular plate with radii a and R will be studied.
The plate is subjected to the distributed transverse loading of intensity P = P (r),
where r is the current radius. Assume that the outer edge is simply supported whereas
the inner edge of the plate is completely free. Therefore, at the outer edge the trans-
verse deflectionW and the radial bending momentM1 must vanish. The radial bend-
ing moment is zero at the inner edge, as well. Thus, the boundary conditions are at
the outer edge

W (R) = 0, M1(R) = 0 (2.37)

and at the inner edge
M1(a) = 0, Q(a) = 0 (2.38)
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Figure 2.9: Bending moments, Tresca.

31



Figure 2.10: Bending moment M1, Tresca.
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Figure 2.11: Circumferential moment M2, Tresca.
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Figure 2.12: Deflection W , Tresca.
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Figure 2.13: Bending moments, diamond.
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Figure 2.14: Bending moment M1, diamond.
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Figure 2.15: Circumferential moment M2, diamond.
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Figure 2.16: Deflection W , diamond.
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where Q is the shear force. Note that the hoop moment M2 can take arbitrary values
at the both edges. For the sake of simplicity it is assumed that the cross sections of
the plate are of sandwich type. Thus the plate consists of two rims of thickness and
of the core material between them. Let the total thickness of the plate be H . The aim
of the paper is to determine the distributions of bending moments M1, M2 and the
transverse deflection W for each value of the transverse load. It is expected that in
the range of low loadings the plate is fully elastic and with the subsequent increase
of the load level elastic plastic deformations occur.

2.7.1 Elastic stage of deformation

In the case of low stress level the plate remains elastic and the Hooke’s law holds
good. The latter can be presented as (see Reddy [7], Hodge [3]) as in Eq. (1.8). The
stresses are coupled with external loads by the equilibrium equations (Save et al [8])

d

dr
(rM1)−M2 − rQ = 0 (2.39)

and
d

dr
(rQ) = −P (r)r. (2.40)

In the present case it is assumed that P (r) = const . This admits to integrate the last
equation. The solution of Eq. 2.40 satisfying the boundary condition (2.38) can be
presented as

Q = −P (r2 − a2)
2r

. (2.41)

The general solution of Eq. (1.14) satisfying (2.37) is

W =
P (r4 −R4)

64D
+A1(r

2 ln r −R2 lnR) +A2(r
2 −R2) +A3 ln

r

R
(2.42)

39



A1 – A3 being arbitrary constants. However, calculating the shear force Q from
(2.39) making use of (1.11), (1.8), (2.42) and comparing with (2.41) one can see that

A1 = −Pa
2

8D
(2.43)

Substituting (2.42) in Eq. (1.11) one can determine the bending moments

M1 = −Pr
2(3 + ν)

16
+
Pa2[2(1 + ν) ln r + 3 + ν]

8

−D
[
2A2(1 + ν) +

A3(ν − 1)

r2

] (2.44)

and

M2 = −Pr
2(1 + 3ν)

16
+
Pa2[2(1 + ν) ln r + 1 + 3ν]

8

−D
[
2A2(1 + ν) +

A3(1− ν)

r2

]
.

(2.45)

Applying the boundary conditions (2.37), (2.38) to Eq. (2.44) one can define

A2 =
P

32D(1 + ν)(R2 − a2)
·
{

(3 + ν)(a4 −R4)

+2a2[(R2 − a2)[2(1 + ν) ln a+ 3 + ν]− 2R2(1 + ν)(ln a− lnR)]
}
,

(2.46)

A3 =
Pa2R2[(3 + ν)(R2 − a2) + 4a2(1 + ν)(ln a− lnR)]

16D(ν − 1)(R2 − a2)
. (2.47)

2.7.2 Elastic plastic stage of deformation

The plate remains pure elastic until the stress profile lies entirely inside the Tresca’s
yield hexagon (Fig. 1.3). During the elastic stage the inequalities

|M1| ≤M0, |M2| ≤M0, |M1 −M2| ≤M0 (2.48)

are satisfied as strict inequalities. The elastic plastic stage begins at the load level
P = P1 when the stress profile reaches to the yield locus. The analysis shows that
the stress profile reaches to the side M2 = M0 of the yield hexagon. The maximum
of the hoop moment is achieved at the inner edge of the plate and the quantity P1 can
be calculated from the equation M2(a) = M0. Therefore,

P1 =
8M0(R

2 − a2)
R4(3 + ν) + 4a2R2[(1 + ν)(ln a− lnR)− 1] + a4(1− ν)

. (2.49)

During the elastic plastic stage the plate is divided into two parts. In the inner part
(a, y) plastic deformations take place whereas the region (y,R) remains elastic. Let
us consider the regions separately.
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Plastic region, r ∈ (a, y)

For r ∈ (a, y) the stress profile lies on the side M2 = M0 of the yield hexagon
(Fig. 1.3). Substituting M2 = M0 in Eq. (2.39) and taking Eq. (2.41) into account
one obtains for r ∈ (a, y)

rM1 − rM0 +
P

2

(
r3

3
− a2r

)
= C, (2.50)

C being an arbitrary constant. Due to the boundary condition (2.38)

C = −aM0 −
Pa3

3
(2.51)

and Eq. (2.50) can be put into the form

M1 =
r − a
r

[
M0 −

P (r2 + ar − 2a2)

6

]
. (2.52)

It is worthwhile to emphasize that Eq. (2.52) holds good for r ∈ (a, y). The deflec-
tion W is expressed by the formula (1.23).

Elastic region, r ∈ (y,R)

In the elastic region of the plate the relations (2.42) – (2.45) hold good. However,
Eq. (2.46) and (2.47) are not valid. For determination of unknown constants A2,
A3 and A, B one can use the boundary conditions at r = y, also the continuity

requirements of quantitiesW ,
dW

dr
,M1,M2 at r = y. The requirementsM1(R) = 0

and M2(y) = M0 give with the help of Eq. (2.44), (2.45)

−PR
2(3 + ν)

16
+
Pa2[2(1 + ν) lnR+ 3 + ν]

8

−D
[
2A2(1 + ν) +

A3(ν − 1)

R2

]
= 0

(2.53)

and

−Py
2(1 + 3ν)

16
+
Pa2[2(1 + ν) ln y + 1 + 3ν]

8

−D
[
2A2(1 + ν) +

A3(1− ν)

y2

]
= M0.

(2.54)

The continuity of the radial bending moment at r = y with Eq. (2.44) and (2.52)
furnishes the relation

Pa2[2(1 + ν) ln y + 3 + ν]

8
−D

[
2A2(1 + ν) +

A3(ν − 1)

y2

]
−Py

2(3 + ν)

16
− y − a

y

[
M0 −

P (y2 + ay − 2a2)

6

]
= 0.

(2.55)
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Due to the continuity of the deflection and its slope one has making use of Eq. (2.42)
and (1.23)

A =
Py3

16D
− Pa2y(2 ln y) + 1

8D
+ 2A2y +

A3

y
(2.56)

and

−P (y4 −R4)

64D
− Pa2(y2 ln y −R2 lnR)

8D
+A2(y

2 −R2)

+A3 ln
y

R
−Ay −B = 0.

(2.57)

From Eq. (2.55), (2.54) one can easily define

A2 =
1

48D(1 + ν)y
· {−Py3(1 + 3ν) + 6Pa2y[(ν + 1) ln y + ν]

+12M0(a− 2y) + 4Pa3}
(2.58)

and

A3 =
y[Py3(1 + 3ν)− 6Pa2y(1 + ν) + 8a(3M0 + Pa2)]

48D(ν − 1)
. (2.59)

The equation (2.57) admits to define

B =
P [−3y4 + 8a2y2(ln y + 1)−R2(R2 − 8a2 lnR)]

64D

−(y2 +R2)A2 +
(

ln
y

R
− 1
)
A3.

(2.60)

Substituting A2, A3 from Eq. (2.58), (2.59) in (2.53) one obtains the equation

−PR
2(3 + ν)

16D
+
Pa2[2(1 + ν) lnR+ 3 + ν]

8D
+

1

24Dy

·{−Py3(1 + 3ν) + 6Pa2y[(ν + 1) ln y + ν] + 12M0(a− 2y) + 4Pa3}

+
y[Py3(1 + 3ν)− 6Pa2y(1 + ν) + 8a(3M0 + Pa2)]

48DR2
= 0.

(2.61)

The equation (2.61) serves for determination of the quantity y for fixed load intensity
P .

2.7.3 Numerical results

The equation (2.61) is solved numerically making use of the computer code Mathe-
matica. The results of calculations are presented in Table 2.7.3 and Fig. 2 – Fig. 4 in
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Table 2.2: Loading and y.
P (Pa) 611197 657220 703243 749266 795289 841312 887335 933358 979381 1025404 1071427
y(m) 0.3 0.3245 0.3536 0.3884 0.4304 0.4808 0.5409 0.6115 0.6939 0.7941 0.9989
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Figure 2.18: Bending moments, annular.

the case a = 0.3R. Calculations carried out showed that the plastic region expands
with the growth of the load intensity (Table 1).

The transverse deflections of the plate are depicted in Fig. 2 for different values
of the load intensity. The enlarged symbols in Fig. 2 indicate the border between
elastic and plastic regions. The distributions of bending moments and are presented
in Fig. 3 and Fig. 4, respectively. It can be seen from Fig. 3, 4 that the distributions of
bending moments are statically admissible since at each corresponding values of , are
such that the point either lies on the side of the yield hexagon or is located inside the
hexagon. The elastic plastic stage of deformation is completed at the loading level
where the whole plate is plastic. This situation corresponds to and .
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Figure 2.19: Bending moments, annular.
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Figure 2.20: Bending moments, annular.

44



0.0

0.4

0.8

1.2

1.6

M
1
 /

 1
0

5

 

0.4

0.8

1.2

1.6

2.0

M
2
 /

 1
0

5

 0.00

0.02

0.04

0.06

0.08
0.0 0.2 0.4 0.6 0.8 1.0

W

r

P = 504405
565075
625745
686415
747085
807755
868425
929095
989765

1050435
1111105

Figure 2.21: Bending moments, annular.
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Figure 2.22: Deflection W , annular.
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Figure 2.23: Deflection W , annular.
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CHAPTER 3
ELASTIC PLASTIC BENDING OF STEPPED ANNULAR
PLATES

3.1 Problem formulation and basic hypothesis

Let us consider the axisymmetric bending of an annular plate subjected to the trans-
verse pressure of intensity P = P (r), where r is the current radius. Assume that the
internal edge of the plate of radius a is clamped whereas the external edge of radius
R is absolutely free. The plate under consideration has sandwich-type cross section
(see Fig. 3.1).

The behaviour of the plate will be prescribed with the first order bending the-
ory of thin plates corresponding to small deformations and small displacements (see
[32, 41]. The stress state is defined by bending momentsM1,M2 in the radial and cir-
cumferential direction, respectively. Note that the membran forces will be neglected
according to current approach. The third generalized stress component to be taken
into account is the shear force Q but this component does not contribute to the strain
energy when the bending theory is used. Moreover, the shear force, although appear-
ing in the equilibrium conditions, can be eliminated from the equilibrium equations
and thus does not involve in the set of governing equations.

As regards kinematical quantities the only displacement to be taken into account
is the transverse deflection W = W (r) whereas the radial displacement can be ig-
nored according to the current approach. The strain components corresponding to the
generalized stress components M1, M2 are the curvature components κ1, κ2 in the
radial and circumferential direction, respectively.

It is assumed that the stress strain state induced by the axisymmetric transverse
pressure is axisymmetric at each stage of the pressure. Thus the stress and strain
components are defined at each point of the plate by the current radius and the given
pressure level.

Material of the plate is assumed to be an ideal elastic plastic material obeying the
square yield condition in the plastic (inelastic) stage of deformation.

The aim of the chapter is to determine the transverse deflection as well as bending
moments distributions in the elastic and subsequent inelastic stages of deformation
for given transverse pressure levels.
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Figure 3.1: Cross-section.

3.2 Basic equations and concepts

It is well known that in the case of lower values of the pressure loading the plate is
pure elastic. The elastic behaviour of the material can be prescribed with Hooke’s
law. The latter is to be presented in the generalized form as

M1 = Dj(κ1 + νκ2),

M2 = Dj(κ2 + νκ1)
(3.1)

where j = 0, 1 and in the case of sandwich plate Dj is presented by the formula
(2.8).

During the subsequent quasistatic increasing the external loading constitutive
equations (3.1) hold good until the elastic limit is exhausted at an unknown point
of the plate. In the case of the pressure of constant intensity the yield limit is reached
at first at the center of the plate. After that the plate is subdivided into elastic and
plastic regions, respectively. Let these regions be Se and Sp, respectively. Since we
are studying the plate of sandwich type and the carrying layers are thin no elastic
plastic state of deformatons occurs.

Assume that the material of the plate obeys the square yield condition and asso-
ciated flow rule (Fig. 3.2). Thus for r ∈ Sp the stress state of the point is such that
the point (M1(r) , M2(r)) lies on a side of the square (Fig. 3.2). It means that at each
point of the plate are satisfied inequalities

|M1| ≤M0j , |M2| ≤M0j (3.2)
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Figure 3.2: Square yield condition.

where M0j stands for the yield moment corresponding to the thickness hj . It can be
easily stated that M0j is presented in form (2.4).

Evidently, at the boundary of the plate requirements

M1(R) = 0,

Q(r) = 0
(3.3)

and
W (a) = 0 (3.4)

must be satisfied at each loading level.
Let us consider the governing equations separately in elastic and plastic regions,

respectively. In elastic regions the stress strain state is determined according to (1.1)
and (3.1). Substituting (3.1) and (1.8) in (1.1) easily leads to the equation (2.7).

In the following it is reasonable to use non-dimensional quantities

ρ =
r

R
, m1 =

M1

M∗
, m2 =

M2

M∗
, q =

RQ

M∗
,

α =
a

R
, αj =

aj
R
, p =

PR2

M∗
, w =

W

H
,

γj =
hj
h∗
, dj =

EH2hj
2(1− ν2)σ0R2h∗

(3.5)
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where M∗ = σ0h∗H is the yield moment of a reference plate of constant thickness
h∗.

Making use of variables (3.5) one can present the equilibrium equations (1.1) as

((ρm1)
′ −m2)

′ + pρ = 0 (3.6)

where prims denote the differentiation with respect to the non-dimensional radius ρ.

3.3 General solutions in elastic and plastic regions

Let us denote an elastic region (aj , aj+1) where the thickness of carrying layers is hj
by Sej .

Making use of (2.7) and (3.5) it is easy to recheck that the general solution of
(2.7) can be presented as

w = A1jρ
2 ln ρ+A2jρ

2 +A3j ln ρ+A4j +
pρ4

64dj
(3.7)

where ρ ∈ Sej and dj =
DjH

M∗R2
. Arbritrary constants A1j , . . .A4j will be deter-

mined from the boundary requirements and continuity conditions for w, w′, m1 at
the boundaries between elastic and plastic regions.

Non-dimensional bending moments can be determined according to (3.1) and
(3.5) as

m1 = −dj
(
w′′ +

ν

ρ
w′
)
,

m2 = −dj
(
w′

ρ
+ νw′′

) (3.8)

for ρ ∈ Sej . The terms with derivatives w′, w′′ in (3.8) can be expressed as

w′ = A1j(2ρ ln ρ+ ρ) + 2A2jρ+
A3j

ρ
+

pρ3

16dj
(3.9)

and

w′′ = A1j(2 ln ρ+ 3) + 2A2j −
A3j

ρ2
+

3pρ2

16dj
(3.10)

for ρ ∈ Sej .
The third stress component besides bending moments is the shear force. It is

reasonable to calculate it from the equilibrium equations (1.1) or (3.6). From (3.6),
(1.1) one easily obtains the equation

(ρq)′ = −pρ (3.11)
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which holds good over the entire plate. The solution of this equation which satisfies
the boundary condition q(1) = 0 is

q = −p
2

(
ρ− 1

ρ

)
(3.12)

for ρ ∈ (α, 1).
The solution of basic equations in a plastic region Sp depends on the particular

yield regime. It appears that in the present case the stress strain state in a plastic
region of the plate corresponds to the sides AD or DC of the square yield condition
(Fig. 3.2). Let us consider these yield regimes in a greater detail.

In the case of the yield profile CD one has m1 = −γj for ρ ∈ Spj ⊂ (aj , aj+1).
However, it can be rechecked (see [7, 34]) that this regime can not take place at a
region of finite length.

If the stress profile lies on the side AB of the yield square (Fig. 3.2) then m2 =
−γj and after integration of (3.6) with (3.12) one has

m1 = −γj −
p

2

(
ρ2

3
− 1

)
+
Ej
ρ

(3.13)

for ρ ∈ Spj .
In the case of the yield regime AD one has κ1 = 0 and thus

w = Ajρ+Bj (3.14)

for ρ ∈ Spj , where Aj , Bj are arbritrary constants. However, on the side CD of the
yield condition (Fig. 3.2) κ2 = 0 and thus w = const. This is one of but not the only
reason why the regime CD does not take place in a region of finite length.

3.4 The pure elastic stage of deformation (stage I)

As the intensity of the pressure loading is increased from zero, the entire plate is
elastic until the stress profile reaches a side of the yield condition. However, during
the elastic stage the stress profile lies inside the square ABCD (Fig. 3.2) where
γ = min γj .

During this stage of loading the deflection is defined by (3.7), bending moments
and the shear force by (3.8) and (3.12), respectively. For determination of unknown
constants one can use the boundary conditions w′(a) = w(a) = 0, m1(1) = 0 and
the continuity requirements

[w(αj)] = 0,

[w′(αj)] = 0,

[m1(αj)] = 0

(3.15)
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for j = 1, . . ., n where the square brackets denote finite jumps, e. g. [z(αj)] =
z(αj + 0)− z(αj − 0).

It appears that the general solution in the form (3.7) may involve inadequate so-
lutions for particular cases. In order to avoid this one has to check if the shear force
in the form (3.12) concides with that following from the first equation of the system
(1.1).

Let us denote
ρq̄ = (ρm1)

′ −m2. (3.16)

Evidently, q̄ = q. Thus one has to check if the constraints

q̄(ρ) = q(ρ) (3.17)

for ρ ∈ Sej (j = 1, . . ., n) with the boundary condition q̄(1) = 0 are satisfied.
Making use of (3.7) - (3.10) and (3.12) with (3.16) it is easy to show that equalities
(3.17) take place if

A1j = − p

8dj
(3.18)

for j = 0, . . ., n.
Thus, for determination of 3n+ 3 unknown constants A2j , A3j , A4j (j = 0, . . .,

n) one has three boundary conditions and 3n continuity conditions (3.15).
Making use of (3.8), (3.9), (3.10) and taking (3.18) into account it is easy to

determine the bending moments

m1 =
−pρ2(3 + ν)

16
− p

8
[2(1 + ν) ln ρ+ 3 + ν]

−2(1 + ν)A2jdj +
A3jdj(1− ν)

ρ2

(3.19)

and

m2 =
−pρ2(1 + 3ν)

16
− p

8
[2(1 + ν) ln ρ+ 1 + 3ν]

−2(1 + ν)A2jdj +
A3jdj(1− ν)

ρ2

(3.20)

for ρ ∈ (aj , aj+1), j = 0, . . ., n.
It is interesting to remark that the distribution of the shear force does not depend

on the distribution of thicknesses, as it can be seen from (3.12). At the same time
other stress components (bending moments) do depend on the thicknesses.

The elastic loading stage completes at the moment when the stress profile reaches
the sideCD of the yield square. In the case of a plate of constant thickness the plastic
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yielding happens at first at the internal edge of the plate for ρ = α. At the limit stage
between the fully elastic stage and inelastic stage for p = p0

m1(α) = −γ0. (3.21)

Note that, in principle, the plastic yielding may start elsewhere, as well. If, for
instance, the inner annulus is very narrow and the thickness h0 is large whereas the
next annulus has very small thickness then the yield can start from the next annulus.
However, these cases will not studied in the present work.

3.5 Elastic plastic stage with the hinge circle (stage II)

Assume that during this stage of deformation the plastic hinge circle is located at the
internal edge of the plate for ρ 6= β is elastic as during the previous stage. However,
due to the hinge the boundary condition w′(α) = 0 is no more valid. For determina-
tion of unknown constants A2j , A3j , A4j one can use relations (3.15) – (3.17) with
boundary conditions w(α) = 0, m1(1) = 0 and (3.21). Note that (3.18) remains
valid, as well. The latter admits to present the deflection for ρ ∈ [αj , αj+1] as

w =
pρ2(ρ2 − 8 ln ρ)

64dj
+A2jρ

2 +A3j ln ρ+A4j . (3.22)

Making use of (3.22), (3.19) and satisfying boundary conditions w(α) = 0,
m1(α) = −γ0 results in

A20α
2 +A30 lnα = −A40 −

pα2(α2 − 8 lnα)

64d0
,

−2A20(1 + ν)d0 +
d0(1− ν)A30

α2

= −γ0 +
pα2(3 + ν)

16
+
p[2(1 + ν) lnα+ 3 + ν]

8

(3.23)

Finally, employing the continuity conditions (3.15) with boundary conditions
(3.23) and m1(1) = 0 admits to determine unknown constants A2j , A3j , A4j for
each j = 0, . . ., n.

This stage of determination will be completed when the stress profile at ρ = α
reaches the point D (Fig. 3.2) so that m2(α) = −γ0. Let the corresponding value of
the external load intensity be p1.
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3.6 The elastic plastic stage with a plastic region of finite length (stage
III)

It is reasonabelt to assume that during the subsequent increasing the tansverse pres-
sure plastic deformations take place for ρ ∈ Sp0, ρ ∈ [α, η] where η is a previously
unknown constant. The plastic region corresponds to the yield regime DA (Fig. 3.2).
Thus, for ρ ∈ (α, η)

m2 = −γ0. (3.24)

The distribution of the radial bending moment m1 can be calculated by (3.13)
taking j = 0. As at ρ = β, m1 = −γ0 the arbitrary constant E0 is to be

E0 =
αp

2

(
α2

3
− 1

)
. (3.25)

Thus the bending moment is defined as

m1 = −γ0 −
p

2

(
ρ2

3
− 1

)
+
αp

2ρ

(
α2

3
− 1

)
(3.26)

for ρ ∈ [α, η].
The tranverse deflection has the form (3.14) in the plastic region Sp0. According

to the boundary condition w(α) = 0 must be B0 = −A0α. Thus

w = A0(ρ− α) (3.27)

for ρ ∈ [α, η].
Since we can now define w(η), w′(η), m1(η) the subsequent solution procedure

is similar to that accomplished in the previous section. Note that for ρ > η the plate
is elastic. For determination of the parameter η one has to use the continuity of the
moment m2 taking m2(η) = −γ0.

3.7 Several plastic regions

The previous stage of loading terminates at the moment when plastic yielding takes
place in the section Sp1 or in another section. Let us assume for the conceteness sake
that the stress profile reaches to the corresponding yield level at ρ = α1 when p = p2.
Thus for p ≥ p2 the plastic deformations take place in the region (α1, η1) as well as
in (α, η) which continues the extension. It means that m2 = −γ0 for ρ ∈ (α1, η1).

The bending moment distribution for ρ ∈ Sp1 can be defined according to (3.13)
with the unknown constant E1. Similarily the deflection w is given by (3.14) with
unknown constants A1, B1.
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Figure 3.3: Bending moments m1, m2.

The procedure of the determination of constants of integration is similar to that
accomplished in the previous case. Now we have to take into account that the region
(η, α1) between plastic regions remain elastic. Here we have unknown constants
A21, A31, A41. The number of unknowns in each region is, thus, three. For deter-
mination of these constants the continuity requirements for m1, w, w′ are applicable.
Finally, the parameters η, η1 are to be determined from equations m2(η) = −γ0 and
m2(η1) = −γ1 where m2 is calculated for an elastic region according to (3.20) with
previously defined constants A2j , A3j .

3.8 Numerical results

Results of calculations in the case of plates with a single step are presented in Fig. 3.3
– 3.9. The results regard to the plate with inner radius a = 0.2R.

The stress profiles on the plane of moments m1, m2 are shown in Fig. 3.3 for
different values on the load intensity. It can be seen from Fig. 3.3 that the profiles
corresponding to smaller values of the load p lie wholly inside the square |m1| ≤ 1,
|m2| ≤ 1. When the load intensity increases until p = p1 the end of the profile
reaches the side m1 = −1 and for p = p2 the corner point where m1 = m2 = −1.
During subsequent growth of the load intensity the end of the stress profile lies on the
side m2 = −1 as it was expected theoretically.

Distributions of bending moments m1 and m2 are presented in Fig. 3.4 – Fig. 3.6
and Fig. 3.7 – Fig. 3.9, respectively. The locations of boundaries between elastic and
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Figure 3.4: Radial bending moment m1; stage I.
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Figure 3.5: Radial bending moment m1; stage II.

57



-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

m
1

r / R

Figure 3.6: Radial bending moment m1; stage III.
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Figure 3.7: Hoop moment m2; stage I.

58



-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

m
2

r / R

Figure 3.8: Hoop moment m2; stage II.
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Figure 3.9: Hoop moment m2; stage III.
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plastic regions in Fig. 3.6 are shown by asterisks. It can be seen from Fig. 3.8 that
when the load increases the stress state tends to the pure plastic state. In the case of a
plate of constant thickness in the pure plastic statem2 ≡ −1. In the case of a stepped
plate it can be such that m2 = −γj for ρ ∈ (αj , αj+1), j = 0, . . ., n. However, the
question which is the stress state at the plastic collapse can be answered by the limit
analysis of the plate of particular shape.

3.9 Concluding remarks

A method for theoretical investigation of axisymmetric plates subjected to the dis-
tributed transverse pressure was developed. The material of plates was assumed to be
an ideal elastic plastic material obeying the square yield condition and the associated
flow law in the range of inelastic deformations. In order to get maximal simplicity of
the posed problem hardening of the material as well as geometrical non-linearity of
the plate behaviour were neglected.

It was assumed that the plates under consideration had piecewise constant thick-
ness with arbitrary number of steps. Exact solutions were developed for the case
when the plate is clamped at the inner edge whereas the outer edge is absolutely free.
As a result of the solution procedure a succession of stress states which are in equi-
librium with the external loading were constructed that led from the wholly elastic to
the elastic plastic state and finally to the plastic collapse state.
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CHAPTER 4
OPTIMIZATION OF ELASTIC CIRCULAR PLATES WITH
ADDITIONAL SUPPORTS

4.1 Formulation of the problem

The plate under consideration is simply supported at the edge and it is resting on an
absolutely rigid ring support of unknown radius r = s. From practical considerations
it is evident that the desirable position of the additional support is such that the max-
imal deflection of the plate is as small as possible. Thus the optimal location of the
internal support should minimize the functional

J1 = max
r∈[0,R)

W (r, P, s) (4.1)

for given loading P = P (r) and thickness h = h(r). However, the cost function pre-
sented in the form (4.1) has several drawbacks. First of all, it is a non-differentiable
and non-additive functional. The use of non-differentiable functionals in the solution
of problems of optimization is quite complicated. On the other hand, the functional
(4.1) ignores the expenditures necessary for manufacturing of the additional support.

It can be shown that an approximation of the functional (4.1) can be presented as
[3, 18]

J2 =

(∫ R

0
W krdr

) 1
k

(4.2)

where k is an integer. If k →∞ then J2 → ‖W‖.
Due to the circumstancies mentioned above in the present paper the cost function

J =

∫ R

0
W krdr + µ02πs (4.3)

will be employed. In (4.3) µ0 stands for the specific cost (cost per unique length)
of the additional support. We assume herein that the material cost of the additional
support is proportional to its length.

The aim of the chapter is to determine the design of the plate with an additional
support (see Fig. 4.1) which minimizes the cost function (4.3) so that at each value
of P governing equations of the theory of thin axisymmetric plates with appropriate
boundary conditions are satisfied.
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Figure 4.1: Circular plate with additional support.

4.2 Boundary conditions

Taking a look at the equilibrium and constitutive equations (1.1) – (1.9) it appears
that one can eliminate from the set of basic equations variables σ1, ε1, σ2, ε2, κ1,
κ2 and also M2. Introducing another new variable Z one can present the system of
governing equations as

dW

dr
= Z,

dZ

dr
= −M1

D
− νZ

r
,

dM1

dr
=
D(ν2 − 1)Z

r2
− M1(1− ν)

r
+Q,

dQ

dr
= −Q

r
− P (r),

(4.4)

where the flexural stiffness

D =
Eh3

12(1− ν2)
. (4.5)

Variables W , Z, M1, Q will be treated as state variables which satisfy the state
equations (4.4) with appropriate boundary and intermediate conditions. At the outer
edge of the plate , e. g. at r = R bending moment M1 and the deflection W must
vanish. Thus

M1(R) = 0, W (R) = 0. (4.6)

Due to the symmetry at the center of the plate

dW

dr
(0) = 0, Q(0) = 0. (4.7)
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At r = s where the rigid ring support is located must be

W (s) = 0. (4.8)

Note that state variables W , Z, M1 are continuous whereas Q can be discontinu-
ous at r = s.

4.3 Necessary optimality conditions

In order to establish the requirements to be satisfied by the optimal solution let us
introduce the augmented functional (see Bryson [6], Hull [12]; Lellep, Polikarpus
[20])

J∗ = µs+

∫ s

0
F∗dr +

∫ R

s
F∗dr (4.9)

where according to (4.3), (4.4)

F∗ = W k + ψ1

(
dW

dr
− Z

)
+ ψ2

(
dZ

dr
+
M1

D
+
νZ

r

)
+

+ψ3

(
dM1

dr
− D(ν2 − 1)Z

r2
+
M1(1− ν)

r
−Q

)
+

+ψ4

(
dQ

dr
+
Q

r
+ P (r)

) (4.10)

and µ = 2πµ0, the quantities ψ1 – ψ4 being adjoint variables.
Evidently the problem posed above belongs to the class of optimal control prob-

lems with moving boundaries. Therefore, one has to employ total variations when
deriving necessary conditions of minimum of the functional (4.9). The total variation
of a state variable y at r = s+ 0 or at r = s− 0 must be calculated by the following
sample

∆y(s± 0) = δy(s± 0) +
dy(s± 0)

dr
·∆s (4.11)

where ∆y is the total variation and δy stands for the ordinary variation of the variable
y. If the state variable is continuous at r = s then, ofcourse, ∆y(s − 0) = ∆y(s +
0) = ∆y(s). However, in the case of discontinuous variables one has to distinguish
the quantities ∆y(s − 0) and ∆y(s + 0). Note that even in the case of continuous
variables the quantities δy(s− 0) and δy(s+ 0) must not be equal to each other.

The total variation of a Lagrange’ functional is calculated by the rule (see Bryson
[6]),

∆

∫ s

0
Fdr = δ

∫ s

0
Fdr + F |s ·∆s (4.12)
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where ∆s stands for an arbitrary increment of s. According to (4.12) one can write

∆J∗ = µ∆s+ δ

∫ s

0
F∗dr + δ

∫ R

s
F∗dr + F∗|s−∆s− F∗|s+∆s. (4.13)

Taking (4.10) into account one can easily determine the following weak variation

δ
∫ b
a F∗dr =

∫ b
a

{
kW k−1rδW − dψ1

dr
δW − ψ1δZ −

dψ2

dr
δZ+

+
ψ2

D
δM1 +

νψ2

r
δZ − dψ3

dr
δM1 −

D(ν2 − 1)ψ3

r2
δZ+

+
ψ3(1− ν)

r
δM1 − ψ3δQ−

dψ4

dr
δQ+

ψ4

r
δQ

}
dr+

+ (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ)
b
a

(4.14)

where a and b are arbitrary boundaries of integration.
Substituting the both integrals in (4.13) by (4.14) with appropriate choise of

boundaries a and b leads to the relation

∆J∗ = µ∆s+
∫ R
0

{
kW k−1rδW − dψ1

dr
δW − ψ1δZ −

dψ2

dr
δZ+

+
ψ2

D
δM1 +

νψ2

r
δZ − dψ3

dr
δM1 −

D(ν2 − 1)ψ3

r2
δZ+

+
ψ3(1− ν)

r
δM1 − ψ3δQ−

dψ4

dr
δQ+

ψ4

r
δQ

}
dr+

+ (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ) |s0+

+ (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ) |Rs

(4.15)

where the matter that F∗(s) = 0 has taken into account.
Making use of (4.15) one easily obtains from the equation ∆J∗ = 0 the system

of adjoint equations

dψ1

dr
= rkW k−1,

dψ2

dr
= −ψ1 +

νψ2

r
− D(ν2 − 1)ψ3

r2
,

dψ3

dr
=
ψ2

D
+
ψ3(1− ν)

r
,

dψ4

dr
= −ψ3 +

ψ4

r
.

(4.16)
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Note that although the adjoint set (4.16) holds good for each r ∈ [0, r] it must be
integrated separately in regions (0, s) and (s,R), respectively. The reason is that
some of adjoint variables can be discontinuous at r = s.

Boundary conditions (4.6), (4.7) admit to present the transversality conditions as

ψ1(0) = 0, ψ3(0) = 0 (4.17)

and
ψ2(R) = 0, ψ4(R) = 0. (4.18)

Substituting (4.16) – (4.18) in (4.15) admits to rewrite the equation ∆J∗ = 0 as

µ∆s− (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ)|s+0
s−0 = 0. (4.19)

From the physical considerations it is evident that W , Z and M1 are continuous
at r = s. Thus following (4.11) one can write

δW (s± 0) = ∆W (s)− dW

dr
(s) ·∆s,

δZ(s± 0) = ∆Z(s)− dZ

dr
(s) ·∆s,

δM1(s± 0) = ∆M1(s)−
dM1(s± 0)

dr
·∆s,

δQ(s± 0) = ∆Q(s± 0)− dQ(s± 0)

dr
·∆s.

(4.20)

Substituting the weak variations of state variables from (4.20) to (4.19) and taking
into account that ∆W (s) = 0 and ∆Z(s), ∆M1(s), ∆Q(s±0) are independent leads
to the requirements

ψ2(s− 0)− ψ2(s+ 0) = 0,

ψ3(s− 0)− ψ3(s+ 0) = 0
(4.21)

and
ψ4(s− 0) = ψ4(s+ 0) = 0. (4.22)

It was assumed above that Z and M1 are continuous everywhere; thus in particu-
lar at r = s. Bearing in mind the continuity of M1 it infers from (1.8) and (1.9) that

κ1 = −dZ
dr

is also continuous at r = s.
Substituting (4.20) – (4.22) in (4.19) and taking into account the continuity of Z,

κ1, κ2 and ψ2, ψ3, also the arbitrariness of the increment ∆s one can present (4.19)
as

µ+ [ψ1(s)]
dW (s)

dr
+ ψ3(s)

[
dM1(s)

dr

]
= 0. (4.23)
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In (4.23) the quadratic brackets denote the finite jumps of corresponding variables at
r = s, e. g.

[y(s)] = y(s+ 0)− y(s− 0)

where y(s±0) stands for right and left hand limits of the discontinuous variable y(r)
at r = s.

4.4 Solution of governing equations

Consider the solution of state equations (4.4) in greater detail in the case when the
plate thickness h is constant. In this case it follows from (5.16) that D = const, as
well.

Integrating the last equation in the system (4.4) one obtains

Q = −1

r

(∫
P (r)dr + C±

)
(4.24)

where C+ and C− stand for constants of integration in the regions [0, s] and [s,R],
respectively. According to formula (1.15) the general solution can be presented as

W =
Pr4

64D
+A1jr

2 ln r +A2jr
2 +A3j ln r +A4j (4.25)

for r ∈ [rj , rj+1] and j = 0, 1. Here the following notation is used: r0 = 0, r1 = s
and r2 = R. Evidently,

Z =
Pr3

16D
+A1jr(2 ln r + 1) + 2A2jr +

A3j

r
(4.26)

and

M1 = −Pr
2(3 + ν)

16
−A1jD[3 + ν + 2(1 + ν) ln r]−

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j ,

M2 = −Pr
2(1 + 3ν)

16
−A1jD[1 + 3ν + 2(1 + ν) ln r]−

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j .

(4.27)

The integration constantsA1j –A4j will be determined from the boundary and conti-
nuity conditions. Let us consider first the solution in the internal region for r ∈ [0, s].
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Here j = 0 in (4.25) – (4.27). Since at the center of the plate the quantities W (0),
M1(0), M2(0) must be finite whereas according to (4.7) Z(0) = 0 one has

A10 = 0, A30 = 0. (4.28)

Boundary conditions (4.6) with (4.8) and the continuity requirements for Z and M1

result in

A20s
2 +A40 +

Ps4

64D
= 0,

A11s
2 ln s+A21s

2 +A31 ln s+A41 +
Ps4

64D
= 0,

−2sA20 +A11s(1 + 2 ln s) + 2A21s−
A31

s
= 0,

−2A20 +A11(3 + 2 ln s) + 2A21 −
A31

s2
= 0,

A11R
2 lnR+A21R

2 +A31 lnR+A41 +
PR4

64D
= 0,

A11[2(1 + ν) lnR+ 3 + ν] + 2(1 + ν)A21−

−A31(1− ν)

R2
+
PR2(3 + ν)

16D
= 0.

(4.29)

The system (4.29) can be easily solved with respect to unknownsA20,A40,A11,A21,
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A31, A41 and presented as

A20 =
p

K
·
[
R6[2(ν + 5)(ln s− lnR) + 3ν + 13]+

+s2R4[4(ν + 3)(ln s− lnR)− 3ν − 13]+

+s4R2[2(ν + 1)(ln s− lnR) + ν − 1] + s6(1− ν)
]
,

A40 =
−ps2R2

K
·
[
R4[2(ν + 5)(ln s− lnR) + 3ν + 13]+

+4s2R2[(ν + 3)(ln s− lnR)− ν − 4]+

+s4[−2(ν + 1)(ln s− lnR) + ν + 3]
]
,

A11 =
2pR2

K
·
[
(ν + 5)R4 − 2(ν + 3)s2R2 + (ν + 1)s4

]
,

A21 =
−p
K

[
R6[2(ν + 5) lnR− ν − 3]+

+s2R4[4(ν + 3)(lnR− 2 ln s)− ν + 1]+

+s4R2[2(ν + 1) lnR+ ν + 3] + s6(ν − 1)
]
,

A31 = s2 ·A11,

A41 =
−ps2R2

K

[
R4[2(ν + 5)(2 ln s− lnR) + ν + 3]−

−4s2R2[(ν + 3) lnR+ 1] + +s4[2(ν + 1) lnR− ν + 1]
]
,

(4.30)

where K = 64D
[
(ν − 1)s4 − (ν + 3)R4 + 4s2R2[(ν + 1)(lnR− ln s) + 1]

]
.

4.5 Solution of the adjoint system

The adjoint system (4.16) can be integrated after the substitution of (4.25) in (4.16).
For the sake of simplicity let us consider the case when k = 1 in greater detail.

It is easy to recheck that the general solution of (4.16) corresponding to the case
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k = 1 can be presented as

ψ1 =
r2

2
+ C1j ,

ψ2 = C2jr +
C3j

r
− (3 + ν)r3

16
− C1j(1 + ν)r ln r

2
,

ψ3 =
C2jr

2

D(ν + 1)
+

C3j

D(ν − 1)
− r4

16D
−

− C1jr
2

D(ν2 − 1)
+
C1jr

2[(1− ν) ln r + 1]

2D(ν − 1)
,

ψ4 = − C2jr
3

2D(ν + 1)
− C3jr ln r

D(ν − 1)
+ C4jr+

+
r5

64D
+
C1jr

3 ln r

4D
+
C1j(3− 2ν − ν2)r3

8D(ν2 − 1)

(4.31)

for r ∈ [rj , rj+1] where j = 0, 1.
For determination of 8 unknown constants C1j , C2j , C3j , C4j where j = 0, 1 one

has 8 boundary and intermediate conditions presented by (4.17), (4.18), (4.21) and
(4.22).

It immediately follows from boundary conditions (4.17) that

C10 = 0, C30 = 0. (4.32)

The boundary and intermediate conditions (4.18), (4.21), (4.22) lead to the linear
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algebraic system

C21R+
C31

R
− C11(1− ν)R lnR

2
− (3− ν)R3

16
= 0,

−C21R
3(ν − 1)

2
− C31(ν + 1)R lnR+ C41(ν

2 − 1)RD+

+
R5(ν2 − 1)

64
+
C11(ν

2 − 1)R3 lnR

4
+
C11(3− 2ν − ν2)R3

8
= 0,

−C21s
3(ν − 1)

2
− C31(ν + 1)s ln s+ C41(ν

2 − 1)sD+

+
s5(ν2 − 1)

64
+
C11(ν

2 − 1)s3 ln s

4
+
C11(3− 2ν − ν2)s3

8
= 0,

−C20s
3(ν − 1)

2
+ C40s(ν

2 − 1)D +
s5(ν2 − 1)

64
= 0,

(C21 − C20)s+
C31

s
− C11(1 + ν)s ln s

2
= 0,

(C21 − C20)(ν − 1)s2 + C31(ν + 1)− C11s
2+

+
C11s

2(ν + 1)[(1− ν) ln s+ 1]

2
= 0.

(4.33)

From (4.33) one can easily determine the unknown constants C20, C40, C11, C21,
C31, C41 and presented as

C20 = C21 +
C31

s2
− C11(1 + ν) ln s

2
,

C40 =
C20s

2

2D(ν + 1)
− s4

64D
,

C11 =
R2(R2 − s2)[2R2(3 + ν)− (ν + 1)(R2 + s2)]

8L
,

C21 =
C11s

2(ν − 1)

4R2
+

(3 + ν)R2

16
+
C11(1 + ν) lnR

2
,

C31 =
−C11s

2(ν − 1)

4
,

C41 =
C21s

2

2D(ν + 1)
+

C31 ln s

D(ν − 1)
− s4 + 16C11s

2 ln s

64D
−

−C11(−ν2 − 2ν + 3)s2

8D(ν2 − 1)
,

(4.34)
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Figure 4.2: Deflection.
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Figure 4.3: Deflection.

where

L = s2(ν − 1)(s2 −R2) + 2R2(ν + 1)(s2 −R2) lnR− 2R2s2(ν + 1)(ln s− lnR)+

+2R2(ν + 1)(R2 lnR− s2 ln s)−R2(ν + 3)(R2 − s2).

4.6 Discussion of results

Results of calculations are presented in Fig. 4.2 – 4.8. The calculations are imple-
mented for k = 1 and µ = 0 in (4.23).

In Fig. 4.2 – 4.4 the distributions of deflections of the plate are presented for
various values of the transverse load intensity. Fig. 4.2 and Fig. 4.4 correspond to the
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Figure 4.5: Moment.
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positions of the support at s = 0.2R and s = 0.7Rwhereas Fig. 4.3 is associated with
the optimal location of the intermediate support. The optimal solution corresponds
to s = 0.526R. It can be seen from Fig. 4.2 that in the case of smaller values of the
radius of the intermediate support deflections at the central part of the plate for r <
0.2R are directed upward despite the pressure is directed downward. Similarily in the
case when s = 0.7R one can see negative deflections in the outward region for r >
0.7R (Fig. 4.4). However, in the case of optimal position of the additional support the
deflections are non-negative everywhere (Fig. 4.3). It is somewhat surprising that the
maximal deflections in the central and outward regions of the plate, respectively, are
quite different in the optimal case. However, one has to take into account that the cost
function (4.3) with µ0 = 0, k = 1 corresponds to the volume of the axisymmetric
body.

In Fig. 4.5 – 4.7 are presented bending momentsM1 for the cases when s = 0.2R,
s = 0.7R and for the optimal case. It can be seen from Fig. 4.5 – 4.7 that the slope
of the radial bending moment has finite jumps at the support position, as might be
expected. It is some what surprising that the radial bending moment vanishes at
an internal point for any values of the transverse pressure loading. It reveals from
Fig. 4.5 that in the case of smaller values of the radius of the internal support the
radial bending moment remains negative in the central part of the plate. It is negative
in the vicinity of the support in the optimal case, as well.

Distributions of the circumferential bending momentM2 are presented in Fig. 4.8
for different values of the pressure loading. Here s = 0.2R. It reveals from Fig. 4.8
that the bending moment M2 is unexpectedly continuous at r = s.
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CHAPTER 5
ANISOTROPIC PLATE

5.1 Formulation of the problem

Let us consider a circular plate of radiusRmade of a undirectionally reinforced com-
posite material. It is assumed that the fibers are embedded in the matrix material more
or less uniformly with enough high density so that the material can be modelled as a
quasi homogeneous anisotropic material. In the present paper two cases of undirec-
tional reinforcement will be considered. These are the radial and the circumferential
reinforcements, respectively.

The plate under cosideration is simply supported at the edge and it is subjected to
the axisymmetric tranverse pressure loading of intensity P (r) where r stands for the
current radius. Under these assumptions it is reasonable to presume that the stress
strain state of the plate remains axisymmetric during the deformation.

The thickness h of the plate is assumed to be piecewise constant, e.g. h = hj
for r ∈ (aj , aj+1) where j = 0, . . . , n. Note that in the case of a sandwich plate the
quantity h is interpreted as the thickness of carrying layers.

The parameters hj , aj are treated as preliminarily unknown parameters to be
determined so that maximal deflection W0 = W (0) attains the minimal value under
given weight or material volume of the plate. The latter can be presented as

V = π

n∑
j=0

hj(a
2
j+1 − a2j ). (5.1)

It is stipulated in (5.1) that a0 = 0, an+1 = R.

5.2 Equations of equilibrium and strain components

In the present paper the governing equations of the classical bending theory of thin
plates will be used. It can be shown that an element of the plate is in equilibrium
if the following equations are satisfied (see Reddy [? ], Kaliszky [? ], Ventsel and
Krauthammer [? ])

d

dr
(rM1)−M2 − rQ = 0,

d

dr
(rQ) + P (r) · r = 0.

(5.2)

Here M1 and M2 stand for the bending moments in the radial and circumferential
direction, respectively, and Q is the shear force. The stress strain state of the plate is
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assumed to be axisymmetric, e.g. the state is identical for each Θ, Θ being the polar
angle and r current radius. The membrane forces meet the equation

d

dr
(rN1)−N2 = 0 (5.3)

where the subscripts indicate the same directions as in the previous formula.
The generalized stresses are coupled with the principal stresses as

N1,2 =

∫ h
2

−h
2

σ1,2dz

M1,2 =

∫ h
2

−h
2

σ1,2zdz

(5.4)

where σ1, σ2 stand for the normal stresses in the radial and circumferential direction,
respectively. Here h and z are the thickness and the coordinate in the transversal
direction, respectively.

The principle of virtual work states that

δEi = δAe. (5.5)

Here δEi stands for the variation of the internal energy induced by virtual displace-
ments. In the case of axisymmetric plates (see Jones [? ], Ventsel and Krauthammer
[? ])

δEi =

∫ R

a
(M1δκ1 +M2δκ2)rdr (5.6)

whereas (here P (r) is the tranverse pressure and W the deflection)

δAe =

∫ R

a
P (r)δWrdr (5.7)

where κ1 and κ2 stand for the principal curvatures. It is well known that in the case
of circular and annular plates (see Jones [? ], Reddy [? ], Vinson [? ])

κ1 = −d
2W

dr2
,

κ2 = −1

r

dW

dr
.

(5.8)

Note that the principle of virtual work in the form (5.5)-(5.8) holds good in the
case of axisymmetric deformations under the condition that shear deformations as
well as the in-plane displacements can be disregarded. The in-plane displacements
are taken into account in the non-linear plate theories.
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5.3 Constitutive equations

It is known that in a unidirectional fiber-reinforced layer of material two perpendic-
ular planes of symmetry exist at each point. The intersections of these planes with
the middle plane of the lamina define two directions denoted by subscripts 1 and 2,
respectively. These directions called principal axis of orthotropy correspond to the
direction of fibers and a direction transverse to the fibers.

In an orthotropic layer the assumptions of the plane stress hold good and thus the
Hooke’s law reads (see Daniel and Ishai [? ], Jones [? ])

σ1
σ2
τ12

 = [Q] ·


ε1
ε2
γ12

 (5.9)

where σ1, σ2, τ12 are the stress components and ε1, ε2, γ12 corresponding strain
components. The matrix [Q] is defined as

[Q] =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

. (5.10)

The elements Qij in (5.10) are so-called reduced stiffnesses related to the material
constants. Let us denote by E1, E2 Young’s moduli in two principal directions and
by ν12, ν21 corresponding Poisson’s ratios.

For any combination of fibers and the matrix
ν12
E1

=
ν21
E2

(5.11)

and the reduced stiffnesses are

Q11 =
E1

1− ν12ν21
, Q22 =

E2

1− ν12ν21

Q12 =
ν21E1

1− ν12ν21
, Q66 = G12.

(5.12)

It can be seen from (5.11), (5.12) that in the constitutive relations (5.9), (5.10) can be
presented via four independent material constants.

In the following the main attention will be focused at the determination of bend-
ing moments assuming that the contribution of membrane forces and in-plane dis-
placements to the stress strain state is relatively small in the range of small displace-
ments. Thus, assuming that the fibers are embedded in the matrix material in the
radial or circumferential direction only and that

ε1 = zκ1,

ε2 = zκ2

(5.13)
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it follows from (5.9)
σ1 = z(Q11κ1 +Q12κ2),

σ2 = z(Q12κ1 +Q22κ2).
(5.14)

Substituting (5.14) in (5.4) and taking (5.11), (5.12) into account one obtains

M1 = DE1(κ1 + ν21κ2),

M2 = DE2(ν12κ1 + κ2)
(5.15)

where

D =
h3

12(1− ν12ν21)
. (5.16)

For regions of constant thickness where h = hj = const it is reasonable to
denote

Dj =
h3j

12(1− ν12ν21)
. (5.17)

Equations (5.15) with (5.16) present the constitutive equations for anisotropic (in
the present case for orthotropic) layers and plates. Substituting the curvatures κ1, κ2

by the help of (5.8) in (5.15) one obtains

M1 = −E1Dj

(
d2W

dr2
+
ν21
r

dW

dr

)
,

M2 = −E2Dj

(
ν12d

2W

dr2
+

1

r

dW

dr

) (5.18)

for r ∈ (aj , aj+1), where j = 0, . . . , n.

5.4 Solution of governing equations

Let us consider the case when the intensity of the transverse loading P (r) = P =
const in a greater detail. In this case the second equation in the system (5.2) can
be easily integrated. In fact, the differentiation of the first equation in (5.2) and the
substitution of the shear force results in

d

dr

[
d

dr
(rM1)−M2

]
= −Pr. (5.19)

The integration of (5.19) gives

d

dr
(rM1)−M2 = −Pr

2

2
−B0j (5.20)
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for r ∈ (aj , aj+1), j = 0, . . . , n. Here B0j stands for an arbitrary constant.
Substituting the bending moments from (5.18) in (5.20) and accounting for the

relation (5.11) results in

rd3W

dr3
+
d2W

dr2
− E2

E1
· 1

r

dW

dr
=

Pr2

2E1Dj
+

B0j

E1Dj
(5.21)

for r ∈ (aj , aj+1). The shear force Q must be continuous at each r ∈ [a,R]. Thus
Q(aj − 0) = Q(aj + 0). Therefore, one can write

B0j = B0 (5.22)

for each j = 0, . . . , n. Indeed, it immediately follows from (5.2), (5.20) that

Q(r) =
1

r

(
−Pr

2

2
−B0j

)
(5.23)

for r ∈ (aj , aj+1), j = 0, . . . n. Thus at r = aj ± 0 one has

−Paj
2
− B0j−1

aj
= −Paj

2
− B0j

aj
. (5.24)

From (5.24) one can see that B0j−1 = B0j for each j = 1, . . . , n and therefore,
(5.22) holds good.

Let us concentrate on the integration of the equation (5.21). It is reasonable to
denote

E2 = k2E1. (5.25)

Multiplying the both sides of (5.21) to r and integrating results in the second order
diffrential equation (here C0j is an arbitrary constant)

r2d2W

dr2
− rdW

dr
+ (1− k2)W =

=
Pr4

8E1Dj
+

B0r
2

2E1Dj
+ C0j(1− k2)

(5.26)

for r ∈ (aj , aj+1). This is a linear non-homogeneous equation. The general solution
of (5.26) consists of the sum of the general solution of corresponding homogeneous
equation

Wh = C1jr
1+k + C2jr

1−k (5.27)

and of a particular solution of (5.26). The latter can be presented as

Wp =
Pr4

8(9− k2)E1Dj
+

+
B0r

2

2(1− k2)E1Dj
+ C0j .

(5.28)
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In (5.27), (5.28) C0j , C1j and C2j are arbitrary constants of integration.
Finally, the general solution of (5.26) for (r ∈ aj , aj+1), j = 0, . . . , n can be

presented as
W = C0j + C1jr

1+k + C2jr
1−k+

+
Pr4

8(9− k2)E1Dj
+

B0r
2

2(1− k2)E1Dj
.

(5.29)

From (5.29) one easily obtains

dW

dr
= C1j(1 + k)rk + C2j(1− k)r−k+

+
Pr3

2(9− k2)E1Dj
+

B0r

(1− k2)E1Dj
,

d2W

dr2
= C1jk(1 + k)rk−1+

+C2j(1− k)(−k)r−k−1+

+
3Pr2

2(9− k2)E1Dj
+

B0

(1− k2)E1Dj
.

(5.30)

Substitution of (5.30) in (5.18) results in

M1 = −E1Dj

[
C1j(1 + k)(k + ν21)r

k−1+

+C2j(1− k)(ν21 − k)r−k−1+

+
Pr2(3 + ν21)

2E1Dj(9− k2)
+

B0(1 + ν21)

E1Dj(1− k2)

]
,

M2 = −E2Dj [C1j(1 + k)(kν12 + 1)·

·rk−1 + C2j(1− k)(1− kν12)r−k−1+

+
Pr2(1 + 3ν12)

2E1Dj(9− k2)
+

B0(1 + ν12)

E1Dj(1− k2)

]
(5.31)

which hold good for r ∈ (aj , aj+1), j = 0, . . . , n.
The governing equations (5.2) are accompanied with boundary conditions

M1(R) = 0, W (R) = 0 (5.32)

and
dW (0)

dr
= 0 (5.33)
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in the case of a simply supported plate. If membrane forces are taken into account
extra requirements for in-plane quantities are needed.

5.5 Bending of a one-stepped plate

Let us focuse our attention to the plate of piecewise constant thickness

h =

{
h0; r ∈ (0, a)

h1; r ∈ (a,R).
(5.34)

For determination of the stress strain state of the plate one can use the relations (5.29)
– (5.33) for n = 1 and corresponding continuity requirements for the deflection W
and the bending moment M1.

From physical considerations it is evident that the quantitiesW , dWdr , M1 andM2

must be finite at the center of the plate (for r = 0). This is possible only in the case
where (here k > 0)

C10 = 0, C20 = 0. (5.35)

Bearing (5.35) in mind one can simplify the notation equalizing

C00 = W0, C01 = C, C11 = C1, C21 = C2. (5.36)

The continuity of the radial bending moment at r = a leads to the relation

C1(1 + k)(k + ν21)a
k−1+

+C2(1− k)(ν21 − k)a−k−1 = 0.
(5.37)

It is easy to deduce from (5.37)

C2 = −C1(1 + k)(k + ν21)a
2k

(1− k)(ν21 − k)
. (5.38)

Employing the continuity condition for dWdr to (5.30), (5.33) one has

C1(1 + k)ak + C2(1− k)a−k+

+
Pa3

2(9− k2)E1D1
+

B0a

(1− k2)E1D1
=

=
Pa3

2(9− k2)E1D0
+

B0a

(1− k2)E1D0
.

(5.39)
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From (5.39) one can easily determine

B0 = (1− k2)E1D1·

·
[

2k(1 + k)D0a
k−1C1

(k − ν21)(D1 −D0)
−

− Pa2

2E1D1(9− k2)

]
.

(5.40)

The first requirement in (5.32) with (5.31), (5.38) and (5.40) admits to define

C1 =
(k − ν21)(γ − 1)PR2

2(9− k2)(1 + k)E1D1Rk−1
·

·α
2(1 + ν21)− 3− ν21

N
,

C2 =
(k + ν21)PR

2α2k(γ − 1)

2(9− k2)E1D1R−k−1
·

·α
2(1 + ν21)− 3− ν21

N

(5.41)

where for the conciseness sake the notation

N = (k2 − ν221)(1− α2k)(γ − 1)+

+2k(1 + ν21)α
k−1 (5.42)

and
γ =

D1

D0
, α =

a

R
(5.43)

is introduced.
According to the second boundary condition in (5.32) and (5.29) one has

C + C1R
k+1 + C2R

1−k+

+
PR4

8(9− k2)E1D1
+

B0R
2

2(1− k2)E1D1
= 0.

(5.44)

The last equation with (5.38), (5.40), (5.43) admits to define

C =
PR4(2α2 − 1)

8(9− k2)E1D1
+Rk+1C1·

·
[

(1 + k)(k + ν21)α
2k

(1− k)(ν21 − k)
−

− k(1 + k)

(k − ν21)(γ − 1)
− 1

]
.

(5.45)
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Employing the continuity of the deflection W at r = a one obtains

W0 +
Pa4

8(9− k2)E1D0
+

+
B0a

2

2(1− k2)E1D0
=

Pa4

8(9− k2)E1D1
+

+
B0a

2

2(1− k2)E1D1
+ C1a

1+k + C2a
1−k.

(5.46)

Thus the maximal deflection can be calculated as

W0 =

[
Pa4

8(9− k2)
+

B0a
2

2(1− k2)

]
·

· 1− γ
E1D1

+ C1a
k+1 + C2a

1−k
(5.47)

where the constants B0, C1 and C2 are defined by (5.40), (5.41), (5.43).

Figure 5.1: Deflections of the plate.

5.6 Optimal design of a stepped plate

The problem posed above consists in the minimization of the maximal deflection
W0 = W (0) under the condition that the material volume of the plate is constrained.

Evidently, the deflection W (0) is a function of design parameters; W0 =
W0(a1, . . . , an, h0, . . . , hn). The constrained minimum of W0 can be defined em-
ploying the extended function

I∗ = W0(a1, . . . , an, h0, . . . , hn) + λ(V − V0) (5.48)

where λ is an unknown Lagrangeian multiplier.
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The necessary optimality conditions of (5.48) can be written as

∂I∗
∂ai

= 0; i = 1, . . . , n

∂I∗
∂hj

= 0; j = 0, . . . , n

∂I∗
∂λ

= 0.

(5.49)

The system (5.49) consists of 2n + 2 algebraic equations. These admit to determine
2n+2 unknown parameters ai (i = 1, . . . , n), hj (j = 0, . . . , n) and λ for each given
volume of the plate V0.

Figure 5.2: Radial bending moments.

5.7 Numerical results and discussion

The non-linear system of equations (5.49) is solved numerically. Calculations are
carried out with the aid of computer codes Python and Mathematica.

The results of calculations are presented in the Table 1 and Fig. 1–3 for the case
n = 1. The results are obtained for the plate made of a Boron-Aluminium composite
consisting of Aluminium matrix and Boron fibers. For this material E1 = 204 GPa,
E2 = 118 GPa and ν12 = 0.27.

The displacements in the transverse direction are presented for different values
of the intensity of the transverse pressure in Fig. 1. The radial and circumferential
bending moments are depicted in Fig. 2 and Fig. 3, respectively, for different load
levels for the stepped plate with the step at a = 0.2R.

It can be seen from Fig. 3 that the circumferential bending moment is discontinu-
ous at r = a, as might be expected. Calculations carried out showed that the jump of
M2 at r = a depends on the ratio of thicknesses in the adjacent sections of the plate.
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Table 5.1: Optimal values of parameters.
V0 Wo α γ W∗ e

0.45 0.0056 0.5701 0.1852 0.0262 0.2122
0.50 0.0044 0.5475 0.2860 0.0191 0.2306
0.55 0.0039 0.5466 0.3583 0.0143 0.2685
0.60 0.0035 0.5539 0.4230 0.0111 0.3146
0.65 0.0032 0.5670 0.4842 0.0087 0.3678
0.70 0.0030 0.5852 0.5437 0.0070 0.4278
0.75 0.0028 0.6088 0.6028 0.0057 0.4952
0.80 0.0027 0.6384 0.6624 0.0047 0.5709
0.85 0.0026 0.6755 0.7241 0.0039 0.6561
0.90 0.0025 0.7232 0.7904 0.0033 0.7530
0.95 0.0024 0.7887 0.8677 0.0028 0.8651
0.99 0.0024 0.8659 0.9600 0.0025 0.9705

The radial bending moment M1 has slope discontinuity at the step position
(Fig. 2) which is less remarkable in the cases of lower load intensities.

The efficiency of the design established above is assessed by the ratio

e =
W0

W∗
, (5.50)

W∗ being the deflection of the plate of constant thickness h∗ = V0h0. The values of
the coefficient e are accommodated in Table 1 together with optimal values α and γ.
In the first column of Table 1 the values of the plate volume V0 = V

π are presented.
It reveals form Table 1 that for smaller values of V0 the deflection of the reference
plate of constant thickness W∗ is larger, as might be expected. If V0 increases then
the optimal ratio of thicknesses γ = h1

h0
also increases and the step location a =

αR moves towards the edge of the plate. However, the maximal deflection of the
optimized plate decreases if the quantity V0 increases.

Calculations carried out showed that the optimal values of α and γ are insensitive
with respect to the changes of the load intensity. However, the optimal value of W0

as well as the quantities W∗ and e do depend on the value of the load intensity P .

5.8 Conclusions

A method for analysis and optimization of fiber reinforced composite plate was de-
veloped. Considering the cases of unidirectional orientations of fibers the composite
was modelled as a quasi homogeneous anisotropic material having different proper-
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Figure 5.3: Circumferential bending moments.

ties in different directions. In the paper the attention was focused on the cases of
radial and circumferential orientation of fibers in the matrix material.

Invoking the methods of non-linear mathematical programming the optimal de-
sign parameters of plates with piecewise constant thickness are determined. The
optimization problems are solved with the aid unknown Lagrangeian multipliers. Nu-
merical results are obtained with the aid of existing computer codes. It was shown
that the optimal values of design parameters depend on the physical and geometrical
parameters but these are insensitive with respect to the loading level.
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SUMMARY IN ESTONIAN

Galaktikate evolutsiooni mõistmine nende heledusfunktsiooni abil

Galaktikad, mis koosnevad kuni sadadest miljarditest tähtedest, gaasist ja tolmust, on
ühed tähelepanuväärsemad süsteemid Universumis. Juba visuaalsete vaatluste põhjal
on näha, et neid on väga mitmesuguseid: spiraalseid, elliptilisi ning lisaks ka korra-
päratu kujuga. Selline mitmekesisus tekitab küsimuse, kuidas galaktikad on tekki-
nud ning millised füüsikalised protsessid on galaktikate evolutsioonis olulised? Kuna
galaktikate tekkimine ja evolutsioon hõlmab paljusid erinevaid füüsikalisi protsesse
ning on seetõttu üsna komplitseeritud, siis on galaktikate tekkimine tänapäeva kos-
moloogias üks aktuaalsemaid teemasid. Galaktikate evolutsioni parem mõistmine on
ka antud uurimuse üks eesmärke.

Praeguse üldtunnustatud arusaama järgi tekivad galaktikad tumeaine halodes, ku-
hu koondub gaas ning kus peale gaasi piisavat jahtumist algab täheteke. Galaktikate
tekkimine ja evolutsioon toimub hierarhilise arenguna: kõigepealt tekivad väiksemad
süsteemid ning nende järk-järgulisel liitumisel tekivad üha suuremad süsteemid. Sel-
lise hierarhilise kuhjumise kestel toimub väga palju galaktikate omavahelisi põrkeid
ning ühinemisi, mis kõik mõjutavad galaktikate arengut.

Tänapäeva kosmoloogias on küllaltki hästi teada põhilised füüsikalised protses-
sid, mis mõjutavad galaktikate arengut. Peamiste protsessidena võib välja tuua ga-
laktikate põrgetel toimuvad gravitatsioonilised häiritused, tekkivad lööklained, gaasi
ümberpaiknemine, tiheduse muutused, täheteke ja supernoovade plahvatused, aktiiv-
sete galaktikatuumade mõju ning galaktikate liikumine läbi galaktikate vahelise kesk-
konna. Hoolimata sellest, et me teame olulisemaid galaktikate arengut mõjutavaid
protsesse, on galaktikate tekkimine tervikuna tunduvalt halvemini teada. Peamiseks
põhjuseks on asjaolu, et me ei tea piisava täpsusega, milliste füüsikaliste tingimus-
te juures ja milliste keskkonna parameetrite puhul on eelpool nimetatud füüsikalised
protsessid olulised. Kasutades pool-analüütilisi mudeleid, on praeguseks siiski kül-
laltki palju uuritud erinevaid protsesse sõltuvana kujunevate galaktikate lokaalsest
ümbrusest. Lokaalse ümbrusena vaadeldakse peamiselt galaktika gruppe ja parvi.

Vaatluslikust kosmoloogiast on teada, et galaktika grupid ja parved ei paikne
Universumis juhuslikult, vaid moodustavad suuremastaabilise kärgstruktuuri – super-
parvede ja tühikute võrgustiku. Kuidas galaktikate areng sõltub suuremastaabilisest
struktuurist ning kas tühikutes ja superparvedes tekivad galaktikad sarnaselt või eri-
nevalt, on küllaltki vähe uuritud. Et uurida suuremastaabilise sturktuuri mõju, on vaja
kasutada suuri galaktikate valimeid. Kasutades viimastel aastatel valminud suuri ga-
laktikate taevaülevaateid on tekkinud võimalus antud probleemi uurida vaatluslikult.
Ühtedeks olulistemaks taevaülevaadeteks on 2dFGRS ja SDSS, mis kokku katavad
ära umbkaudu veerand taevast ning mis sisaldavad enam kui pool miljonit galaktikat.
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Käesoleva töö peamiseks eesmärgiks on uurida, kuidas galaktikate evolutsioon
sõltub Universumi suuremastaabilisest struktuurist ning kuivõrd erinevad on galak-
tikate evolutsiooni põhiprotsessid galaktikaparvede tsentraalsete, satelliitgalaktikate
ja isoleeritud galaktikate jaoks. Uurimiseks kasutame praeguse hetke suurimaid ga-
laktikate ülevaateid 2dFGRS ja SDSS. Universumi suuremastaabilise struktuuri kir-
jeldamiseks kasutame heledus-tiheduse välja, mis pärast vaatluslikke ja selektsioo-
ni parandeid võimaldab küllalt usaldusvääruselt eristada Universumis eri tihedusega
piirkondi: tühikuid, filamente ja superparvi. Galaktika gruppide uurimiseks kasutame
galaktika gruppide ja parvede kataloogi, mis võimaldab eristada grupi tsentraalseid
ja satelliitgalaktikaid ning isoleeritud galaktikaid.

Galaktikate evolutsiooni jälgimiseks kasutame galaktikate heledusfunktsiooni,
mis on üks fundamentaalsemaid meetodeid vaatluslikus kosmoloogias. Me võrdle-
me galaktikate heledusfunktsiooni taevaülevaadete erinevatel alamvalimitel ning tee-
me sellest järeldusi galaktikate evolutsiooni määravate protsesside kohta. Galaktikad
jagame alamvalimiteks nende morfoloogia (spiraalsed, elliptilised) ning värvuse (pu-
nased, sinised) alusel. Samuti uurime heledusfunktsiooni eraldi galaktikagruppide
tsentraalsete, satelliit ja isoleeritud galaktikate jaoks. Kõiki eelpool nimetatud vali-
meid vaatleme sõltuvana suuremastaabilisest struktuurist ehk globaalsest tihedusest.

Galaktikate heledusfunktsiooni arvutamine eeldab, et me teame galaktikate tege-
likke heledusi. Vaadeldud galaktikate heledused sõltuvad paraku sellest, kas ja kui
palju on galaktikates tolmu. Galaktikasisene tolm neelab galaktika tähtede valgust
ning seega näeme vaadeldud galaktikat nõrgemana. Kuna tolmu on märkimisväär-
ses koguses eelkõige spiraalgalaktikatel, siis spiraalgalaktikate vaadeldud heledus
on neeldumisest kõige rohkem mõjutatud. Antud töös korrigeerime spiraalgalakti-
kate heledusi, et taastada galaktikate tegelik heledus. Neeldumise korrektuuri arvu-
tamiseks kasutasime üksiku galaktika detailset modelleerimist. Selline ühe galaktika
detailne modelleerimine võimaldas kindlaks teha, et neeldumine galaktikas sõltub nii
galaktika sisemisest struktuurist kui ka kaldenurgast, mille all galaktika meile pais-
tab. Galaktikates, kus domineerib mõhn, on neeldumine suurem kui galaktikates, kus
domineerib ketas. Galaktika kaldenurgast sõltuvuse analüüs näitas, et neeldumine on
suurim peaaegu serviti paistvate galaktikate korral. Arvutuste tulemusena selgus, et
tolmu korrektsioon mõjutab spiraalgalaktikate heledusi kuni kaks korda.

Uurides galaktikate heledusfunksiooni grupi galaktikatele ning isoleeritud galak-
tikatele, järeldasime, et näivalt isoleeritud galaktikad ei pruugi olla täielikult isolee-
ritud. Enamus näivalt isoleerituid galaktikaid on pigem grupi tsentraalsed (heledai-
mad) galaktikad. Visuaalselt isoleeritud galaktikate olemasolu galaktikate valimis on
tingitud suures osas vaatluslikust selektsioonist: galaktikate ülevaadetes vaadeldak-
se ainult teatud heledusest heledamaid galaktikaid. Sellise vaatlusliku selektsiooniga
registreeritakse paljudes gruppides ainult heledaim galaktika ning grupi ülejäänud
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galaktikad jäävad vaatlemata. Analüüs grupi heledamate ja heleduselt järgmiste ga-
laktikate kohta näitas, et heledusfunktsioon grupi heledamatele galaktiatele alatihe-
dusega piirkondades langeb kokku heledusfunktsiooniga grupi heleduselt teistele ga-
laktikatele ületihedusega piirkondades. See tulemus viitab, et suure tihedusega piir-
kondades olevad grupi heleduselt teised galaktikad on oma varasemas arengus tõe-
näoliselt olnud grupi tsentraalsed (heledaimad) galaktikad, enne kui see grupp on
ühinenud mõne suurema grupiga. Saadud tulemus on kooskõlas hierarhilise kuhju-
mise teooriaga.

Uurides galaktikate heledusfunktsiooni sõltuvana suuremastaabilisest struktuu-
rist, järeldasime, et elliptiliste galaktikate evolutsioon sõltub tugevalt ümbritsevast
suuremastaabilisest keskkonnast, seevastu spiraalsete galaktikate heledusfunktsioon
jääb erineva tihedusega piirkondades muutumatuks. Elliptiliste galaktikate heledus-
te üldine sõltuvus globaalsest keskkonnast oli oodatav, kuna elliptilised galaktikad
tekivad vastavalt praegusele galaktikate tekke paradigmale peamiselt galaktikate ühi-
nemise tulemusel ning tihedamates piirkondades on galaktikate ühinemisi keskmi-
selt rohkem. Spiraalgalaktikate heledusfunktsiooni sarnasus erinevates piirkondades
viitab, et spiraalgalaktikate tekkimine erinevates keskkondades on sarnane. Kuna hie-
rarhilise kuhjumise teooria järgi peaks ka spiraalgalaktikatel olema sõltuvus ümbrit-
sevast globaalsest keskkonnast, siis antud tulemus viitab, et spiraalgalaktikate tekki-
miseks on vajalikud spetsiifilised tingimused. Antud tulemuse detailne analüüs nõuab
põhjalikumaid uurimusi, mis on jäetud edaspidiseks.

Heledusfunktsiooni analüüs sõltuvana galaktikate morfoloogilisest tüübist osu-
tas, et heledate galaktikate hulgas domineerivad elliptilised galaktikad ning nõrgema-
te galaktikate hulgas domineerivad spiraalsed galaktikad. Eelpool mainitud trend on
ka globaalsest keskkonnast sõltuv: tihedamates piirkondades domineerivad heleda-
mas otsas elliptilised galaktikad jõulisemalt kui hõredamas piirkonnas. Kui vaadelda
ainult tühikuid suuremastaabilises struktuuris, siis seal domineerivad kogu heledus-
vahemikus spiraalgalaktikad. See viitab samuti asjaolule, et elliptilite galaktikate tek-
kimises on olulised galaktikte omavahelised põrked ja ühinemised, mida hõredates
piirkondades esineb keskmisest vähem.

Antud töö keskendus galaktikate evolutsiooni vaatluslikule uurimisele ning töö
tulemusi saab edaspidi rakendada vastavates numbrilistes ning pool-analüütilistes
mudelites, mis võimaldavad täpsemalt määrata, millised füüsikalised protsessid on
olulised erinevates keskkondades. Käesoleva töö tulemused näitasid selgelt, et lisaks
lokaalsele (gruppide) keskkonnale on galaktikate evolutsioonis oluline ka globaal-
ne, suuremastaabiline ümbrus. Loodetavasti aitab suuremastaabilise keskkonna mõju
arvestamine lahendada mõnesid huvipakkuvaid probleeme galaktikate tekke stsenaa-
riumites.
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