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Abstract: Elastic circular plates with additional rigid ring supports are investigated. It is assumed that the plate
is made of an ideal elastic material obeying the Hooke’s law. The plate is simply supported at the edge and it
is resting on an absolutely rigid ring support. The problem of optimal location of the internal support is solved
under the condition that the cost of the internal support is proportional to its length. The problem is treated as
a particular problem of optimal control. The variational methods of the optimal control theory are used in order
to get necessary conditions of optimality. Numerical results are presented for the case of uniformly distributed
tranverse pressure.
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1 Introduction

One of the ways of increasing the stiffness of beams,
plates and shells is to furnish these structural elements
with additional supports. Evidently, it is reasonable to
settle these supports in the optimal positions.

The problem of minimization of the compliance
of elastic beams and the determination of the optimal
location of the additional support was first formulated
by Mroz and Rozvany [15]. In the paper [15] designs
of minimum compliance of beams are established in
the case of quasistatic loading. Later Szelag and Mroz
[20], Akesson and Olhoff [1] treated the problems of
maximal eigenfrequency for given stiffness with re-
spect to the location of the additional support. Bo-
jczuk and Mroz [3] developed a new method for si-
multaneous optimization of topology, configuration
and cross-sectional dimensions of elastic beams and
beam structures extending earlier results by Garstecki
and Mroz [6], Mroz and Lekszycki [14], also by
Lepik [13]. In the subsequent papers by Bojczuk and
Mroz [4] this concept was applied for optimal design
of active supports with force actuators. Olhoff and
Akesson [16] treated the stability of columns.

A lot of attention has been paid in the literature
to the optimization of internal supports to beam, plate
and shell structures in the case of inelastic materials.
Probably the first paper in this area is due to Prager
and Rozvany [17]. Systematic reviews of results ob-
tained in earlier papers are presented by Rozvany [19],
also by Lellep and Lepik [10]. Optimal designs of cir-
cular cylindrical shells with additional supports are es-

tablished by Lellep [8, 9] in the case of an ideal plastic
material. The behaviour of geometrically non-linear
cylindrical shells with internal supports is studied in
[11].

A design sensitivity analysis for the deflection of
beam or plate structures was undertaken by Wang [23]
in the case of simple supports located at given mesh
nodes.

In the present paper an analytical method of deter-
mination of positions of rigid ring supports for circu-
lar plates is developed. The analysis is confied to the
axisymmetric response of elastic plates to subjected
loads.

2 Formulation of the problem
As we are studying the axisymmetric response of the
plate all points lying at the circle with radius r have
common displacements W (r) in the transverse direc-
tion as well as common deformations and curvatures
κ1, κ2 in the radial and circumferential directions, re-
spectively. Note that the radial displacement, also ra-
dial and circumferential membrane forces will be ne-
glected in the present study whereas classical equa-
tions of the bending theory of thin plates will be used.

The plate under consideration is simply supported
at the edge and it is resting on an absolutely rigid ring
support of unknown radius r = s. From practical con-
siderations it is evident that the desirable position of
the additional support is such that the maximal deflec-
tion of the plate is as small as possible. Thus the op-
timal location of the internal support should minimize
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Figure 1: An element of the circular plate.

the functional

J1 = max
r∈[0,R)

W (r, P, s) (1)

for given loading P = P (r) and thickness h = h(r).
However, the cost function presented in the form
(1) has several drawbacks. First of all, it is a non-
differentiable and non-additive functional. The use of
non-differentiable functionals in the solution of prob-
lems of optimization is quite complicated. On the
other hand, the functional (1) ignores the expenditures
necessary for manufacturing of the additional support.

It can be shown that an approximation of the func-
tional (1) can be presented as [2, 10]

J2 =

(∫ R

0
W krdr

) 1
k

(2)

where k is an integer. If k →∞ then J2 → ‖W‖.
Due to the circumstancies mentioned above in the

present paper the cost function

J =

∫ R

0
W krdr + µ02πs (3)

will be employed. In (3) µ0 stands for the specific cost
(cost per unique length) of the additional support. We
assume herein that the material cost of the additional
support is proportional to its length.

The aim of the paper is to determine the design of
the plate with an additional support which minimizes
the cost function (3) so that at each value of P govern-
ing equations of the theory of thin axisymmetric plates
with appropriate boundary conditions are satisfied.

3 Governing equations
In the present paper we shall employ the linear theory
of thin plates (see Reddy [18], Vinson [22]). Accord-
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Figure 2: Transverse deflections.

ing to this approach one can treat the equilibrium of
internal and external forces and couples on the basis
of an undeformed element of the plate. Let M1, M2

be the generalized couples called bending moments
in the radial and circumferential directions, respec-
tively. Bending moments M1, M2 are the only gen-
eralized stress components contributing to the internal
energy. Note that the membrane forces are assumed to
be small so that one can neglect the membrane action
of internal forces. Although the shear force Q may be
finite it does not contribute to the internal energy in
the classical plate theory. The reason is that the corre-
sponding strain component vanishes.

In the frameworks of the classical plate theory
couples M1, M2 with forces Q and P form a system
of forces and moments which keep the element of the
plate in equilibrium. The equilibrium conditions of
the plate element presented in Fig. 1 can be written as

d

dr
(rM1)−M2−rQ = 0,

d

dr
(rQ)+P (r)r = 0. (4)

The system of governing equations can be presented
as [12]

dW

dr
= Z,

dZ

dr
= −M1

D
− νZ

r
,

dM1

dr
=
D(ν2 − 1)Z

r2
− M1(1− ν)

r
+Q,

dQ

dr
= −Q

r
− P (r),

(5)

where

D =
Eh3

12(1− ν2)
. (6)

is the flexural stiffness. Variables W , Z, M1, Q will
be treated as state variables which satisfy the state



equations (5) with appropriate boundary and interme-
diate conditions. At the outer edge of the plate , e. g.
at r = R bending moment M1 and the deflection W
must vanish. Thus

M1(R) = 0, W (R) = 0. (7)

Due to the symmetry at the center of the plate

dW

dr
(0) = 0, Q(0) = 0. (8)

At r = s where the rigid ring support is located must
be

W (s) = 0. (9)

Note that state variables W , Z, M1 are continu-
ous whereas Q can be discontinuous at r = s.

4 Necessary optimality conditions
In order to establish the requirements to be satisfied
by the optimal solution let us introduce the augmented
functional (see Bryson [5], Hall [7]; Lellep, Polikar-
pus [12])

J∗ = µs+

∫ s

0
F∗dr +

∫ R

s
F∗dr (10)

where according to (3), (5)

F∗ = W k + ψ1

(
dW

dr
− Z

)
+

+ψ2

(
dZ

dr
+
M1

D
+
νZ

r

)
+

+ψ3

(
dM1

dr
− D(ν2 − 1)Z

r2
+

+
M1(1− ν)

r
−Q

)
+

+ψ4

(
dQ

dr
+
Q

r
+ P (r)

)
(11)

and µ = 2πµ0, the quantities ψ1 – ψ4 being adjoint
variables.

Evidently the problem posed above belongs to the
class of optimal control problems with moving bound-
aries. Therefore, one has to employ total variations
when deriving necessary conditions of minimum of
the functional (10). The total variation of a state vari-
able y at r = s+ 0 or at r = s− 0 must be calculated
by the following sample

∆y(s± 0) = δy(s± 0) +
dy(s± 0)

dr
·∆s (12)
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Figure 3: Deflections for the optimal case.

where ∆y is the total variation and δy stands for the
ordinary variation of the variable y. If the state vari-
able is continuous at r = s then, ofcourse, ∆y(s −
0) = ∆y(s+0) = ∆y(s). However, in the case of dis-
continuous variables one has to distinguish the quan-
tities ∆y(s− 0) and ∆y(s+ 0). Note that even in the
case of continuous variables the quantities δy(s − 0)
and δy(s+ 0) must not be equal to each other.

Making use of (10) – (12) one easily obtains from
the equation ∆J∗ = 0 the system of adjoint equations

dψ1

dr
= rkW k−1,

dψ2

dr
= −ψ1 +

νψ2

r
− D(ν2 − 1)ψ3

r2
,

dψ3

dr
=
ψ2

D
+
ψ3(1− ν)

r
,

dψ4

dr
= −ψ3 +

ψ4

r
.

(13)

Note that although the adjoint set (13) holds good for
each r ∈ [0, r] it must be integrated separately in re-
gions (0, s) and (s,R), respectively. The reason is
that some of adjoint variables can be discontinuous at
r = s.

Boundary conditions (7), (8) admit to present the
transversality conditions as

ψ1(0) = 0, ψ3(0) = 0 (14)

and
ψ2(R) = 0, ψ4(R) = 0. (15)

Equations (13) with (14), (15) admit to rewrite the
equation ∆J∗ = 0 as

µ∆s− (ψ1δW + ψ2δZ+

+ψ3δM1 + ψ4δQ)|s+0
s−0 = 0.

(16)



-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

W

r

s = 0.7 R

Figure 4: Transverse deflections.

From the physical considerations it is evident that
W , Z and M1 are continuous at r = s. Thus follow-
ing the scheme (12) one can write

ψ2(s− 0)− ψ2(s+ 0) = 0,

ψ3(s− 0)− ψ3(s+ 0) = 0
(17)

and
ψ4(s− 0) = ψ4(s+ 0) = 0. (18)

It was assumed above that Z and M1 are continu-
ous everywhere; thus in particular at r = s. Bearing in

mind the continuity of M1 it is clear that κ1 = −dZ
dr

is also continuous at r = s.
Substituting (17) – (18) in (16) and taking into

account the continuity of Z, κ1, κ2 and ψ2, ψ3, also
the arbitrariness of the increment ∆s one can present
(16) as

µ+ [ψ1(s)]
dW (s)

dr
+ ψ3(s)

[
dM1(s)

dr

]
= 0. (19)

In (19) the quadratic brackets denote the finite jumps
of corresponding variables at r = s, e. g.

[y(s)] = y(s+ 0)− y(s− 0)

where y(s± 0) stands for right and left hand limits of
the discontinuous variable y(r) at r = s.

5 Solution of governing equations
Consider the solution of state equations (5) in greater
detail in the case when the plate thickness h is con-
stant. In this case it follows from (6) that D = const,
as well. Integrating the last equation in the system (5)
one obtains

Q = −1

r

(∫
P (r)dr + C±

)
(20)
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Figure 5: Bending moment.

where C+ and C− stand for constants of integration
in the regions [0, s] and [s,R], respectively.

For the subsequent integration of (5) it is reason-
able to substitute Q and M1 making use of (20). This
results in a fourth order equation with respect to the
deflection W known from the theory of elatic plates
(see Reddy [18], Vinson [22]; Ventsel, Krauthammer
[21]). The general solution of this equation can be
presented in the case P = const as

W =
Pr4

64D
+A1jr

2 ln r +A2jr
2+

+A3j ln r +A4j

(21)

for r ∈ [rj , rj+1] and j = 0, 1. Here the following no-
tation is used: r0 = 0, r1 = s and r2 = R. Evidently,

Z =
Pr3

16D
+A1jr(2 ln r + 1) + 2A2jr +

A3j

r
(22)

and

M1 = −Pr
2(3 + ν)

16
−

−A1jD[3 + ν + 2(1 + ν) ln r]−

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j ,

M2 = −Pr
2(1 + 3ν)

16
−

−A1jD[1 + 3ν + 2(1 + ν) ln r]−

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j .

(23)

The integration constants A1j – A4j will be deter-
mined from the boundary and continuity conditions.



6 Discussion of results
Results of calculations are presented in Fig. 2 – 5. The
calculations are implemented for k = 1 and µ = 0.

In Fig. 2 – 4 the distributions of deflections of the
plate are presented for various values of the transverse
load intensity. Fig. 2 and Fig. 4 correspond to the
positions of the support at s = 0.2R and s = 0.7R
whereas Fig. 3 is associated with the optimal location
of the intermediate support. The optimal solution cor-
responds to s = 0.526R. It can be seen from Fig. 2
that in the case of smaller values of the radius of the
intermediate support deflections at the central part of
the plate for r < 0.2R are directed upward despite
the pressure is directed downward. Similarily in the
case when s = 0.7R one can see negative deflections
in the outward region for r > 0.7R (Fig. 4). How-
ever, in the case of optimal position of the additional
support the deflections are non-negative everywhere
(Fig. 3). It is somewhat surprising that the maximal
deflections in the central and outward regions of the
plate, respectively, are quite different in the optimal
case. However, one has to take into account that the
cost function (3) with µ0 = 0, k = 1 corresponds to
the volume of the axisymmetric body.

In Fig. 5 bending moment M1 is presented for
the optimal case. It can be seen from Fig. 5 that the
slope of the radial bending moment has finite jumps at
the support position, as might be expected. It is some
what surprising that the radial bending moment van-
ishes at an internal point for any values of the trans-
verse pressure loading. It reveals from Fig. 5 that in
the case of smaller values of the radius of the internal
support the radial bending moment remains negative
in the central part of the plate. It is negative in the
vicinity of the support in the optimal case, as well.

7 Concluding remarks
Making use of the variational methods of the theory of
optimal control the problem of optimal location of an
additional rigid ring support for a circular plate was
solved. The plate is made of an elastic material and
subjected to a distributed transverse pressure. Nec-
essary optimality conditions have derived under the
assumption that the cost of the additional support is
taken into account. Numerical results have presented
for the plate simply supported at the edge and sub-
jected to the uniformly distributed transverse pressure.

Calculations carried out showed that the optimal
position of the additional support admits to diminish
essentially the cost function. It revealed by calcula-
tions that the both, radial and circumferential bending
moments are continuous over the entire plate.
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