Elastic plastic bending of stepped annular plates
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Abstract: Axisymmetric bending of annular plates subjected to the distributed transverse pressure is studied. The
plates under consideration have piece wise constant thickness of carrying layers and are fully clamped at the inner
edge whereas the outer edge is absolutely free. It is assumed that the material of the plate is an ideal elastic
plastic material obeying the square yield condition and the associated flow law in the stage of plastic deformations.
Assuming that displacements, generalized stresses and strains remain axisymmetric and making use of the pure
bending theory of thin plates the stress strain state of the plate is determined for the initial elastic and subsequent
elastic plastic stages of the deformation. Numerical results are presented for a plate with a single step of the

thickness.
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1 Introduction

The behavior of plates and shells in the range of elastic
deformations has been studied by many authors (see
[7, 11].

It is well known that the structural material is used
in more efficient manner and the ratio of the strength
to weight is larger if inelastic deformations are taken
into account when designing the structure. The be-
havior of annular plates made of perfectly plastic ma-
terials is studied by Lellep and Miirk (2008) in the
case of impulsive loading. Although the early results
of the behavior of elastic plastic circular and annu-
lar plates have obtained a long ago by Hodge (1981);
Tekinalp (1957) most of the attention is paid to plates
of constant thickness only. Comprehensive reviews
of these investigations can be found in the books by
Chakrabarty (2000); Kaliszky (1989); Save, Masson-
net, Saxce (1997); Yu, Zhang (1996). Hodge intro-
duced an essential simplification of inelastic problems
in the case of a Tresca material making use of the
yield surface consisting of two hexagons on the planes
of moments and membrane forces, respectively. It
was used by many investigators for getting approxi-
mate solutions. Among others, Sherbourne, Srivas-
tava (1971) found an analytical solution to the elas-
tic plastic bending problem in the range of large de-
flections. Lellep and Polikarpus (2008) studied the
bending of elastic plastic circular plates of minimum
weight in the case of Tresca’s yield condition.

In the present paper the elastic plastic bending of
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Figure 1: Sandwich cross-section.

annular plates of piece wise constant thickness is stud-
ied. It is assumed that the plate is clamped at the inner
edge. The material of the plate is ideal elastic plastic
obeying the square yield condition.

2 Problem formulation and basic hy-
potheses

Let us consider the axisymmetric bending of an an-
nular plate subjected to the transverse pressure of in-
tensity P = P(r), where r is the current radius. As-
sume that the internal edge of the plate of radius a is
clamped whereas the external edge of radius R is ab-
solutely free.

The plate under consideration has sandwich-type
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Figure 2: Square yield condition.

cross section. It consists of two rims or carrying layers
of thickness h whereas the space between the rims is
stuffed with the core material. The latter is not able to
resist to normal loads. Let the layer of the core mate-
rial be of constant thickness H and the carrying layers
be of piece wise constant thickness, e. g. (Fig. 1)

h=h, (1)

for r € (aj,aj41), where j = 0,1,...,n. Itis rea-
sonable to denote ag = a and a,41 = R. The thick-

nesses hg, ..., hy, and the step locations aq, ..., a,
are assumed to be given geometrical parameters of the
plate.

The aim of the paper is to determine the trans-
verse deflection as well as bending moments distribu-
tions in the elastic and subsequent inelastic stages of
deformation for given transverse pressure levels.

3 Basic equations and concepts

The equilibrium conditions of an element of an ax-
isymmetric plate furnish the equations (see [7, 11])
%(TMI) - M2 - T’Q = 07 %(TQ) = —PT', (2)
provided no external shear loading is applied to the
plate. The assumptions of the classical thin plate the-
ory require transverse shear deformations to be zero.
However, the shear force () is taken into account.
The strain components associated with the bend-
ing moments M7, M5 in the pure bending theory are

d*wW 1dw
M=z =g O

It is well known that in the case of lower values
of the pressure loading the plate is pure elastic. The
elastic behavior of the material can be prescribed with
Hooke’s law. The latter is to be presented in the gen-
eralized form as [7]

My = Dj(k1 +vR2), M= Dj(ka+vk1) 4)

where 7 = 0, ..., n and in the case of a sandwich plate
Eh,;H?

Di=_——2"_. 5
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In (4), (5) and henceforth £ and v denote the Young
and Poisson modulus, respectively.

During the subsequent quasistatic increase of the
external loading constitutive equations (4) hold good
until the elastic limit is exhausted at an unknown point
of the plate. In the case of the pressure of constant in-
tensity the yield limit is reached at first at the clamped
edge of the plate. After that the plate is subdivided
into elastic and plastic regions, respectively. Let these
regions be S, and S, respectively. Since we are
studying the plate of sandwich type and the carrying
layers are thin, no elastic plastic state of a cross sec-
tion occurs.

It is assumed that the material of the plate obeys
the square yield condition and associated flow rule
(Fig. 2). Thus, for r € S, the stress state is such that
the points (M7 (r), Ma(r)) lie on a side of the square
(Fig. 2). It means that at each point € (a;,a;j4+1) of
the plate inequalities

| M| < Moj, |Ms| < Moy, (6)

are satisfied where Mj; stands for the yield moment
corresponding to the thickness h;. It can be easily
stated that [1]

M()j - Joth, (7)

oo being the yield stress of the material. In an elastic
region for r € S, inequalities (6) are satisfied as strict
inequalities.
Evidently, at the boundary of the plate require-
ments
My(R) =0, Q(R)=0 ®)

and
W(a)=0 )

must be satisfied at each loading level.

Let us consider the governing equations sepa-
rately in elastic and plastic regions, respectively. In
elastic regions the stress strain state is determined ac-
cording to (2) and (4). Substituting (4) and (3) in (2)
easily leads to the equation

1ddrd<mnb:mo 10

rdr Tdr rdr TW




Figure 3: Bending moments 11, ma.

for r € (aj,aj4+1), provided (a;, aj+1) C Se.
In the following it is reasonable to use non-
dimensional quantities

T M1 MQ
P:E, mle*, mQ:M*’

RQ a a;
M “TR YT R

PR? w h;j an
p= M, w:ﬁ’ Vj:Ea

2

d; — EH=h;

2(1 - 1/2)0'0R2h*

where M, = ogh,H is the yield moment of a refer-
ence plate of constant thickness h..

Making use of variables (11) one can present the
equilibrium equations (2) as

((prm1) —ma) +pp =0 (12)

where prims denote the differentiation with respect to
the non-dimensional radius p.

4 General solutions in elastic and
plastic regions

Let us denote an elastic region (aj,a;jy1) where the
thickness of carrying layers is h; by S,;.

Making use of (10) and (11) it is easy to recheck
that the general solution of (10) can be presented as

4

W= Ay In p+ A P Agy In p- Ay (13)
J

where p € S and dj = %. Arbitrary constants

Ay, ... Ay; will be determined from the boundary re-
quirements and continuity conditions for w, w’, m; at
the boundaries between elastic and plastic regions.

Non-dimensional bending moments can be deter-
mined according to (4) and (11) as

my = —d;j (w” + Yu'),
o (14)
mo = —d; | — +vw”

for p € S,;. The terms with derivatives w’, w"” in (14)
can be expressed as

Az pp?
"= A1;(2p1 2A5ip+ —2L 15
w 1j(2pInp+p) +2425p+ p +16dj (15)
and
As;  3pp?
w":Alj(zlnp+3)+2A2j—p—§7+ PP” - (16)

16d;

for p € Se;.

The third stress component besides bending mo-
ments is the shear force. It is reasonable to calculate it
from the equilibrium equations (2) or (12). From (12),
(2) one easily obtains the equation

(pq) = —pp (17

which holds good over the entire plate. The solution
of this equation which satisfies the boundary condition

q(1)=0is
_p( 1
4= 2 (p p) (18)

for p € («,1). The particular solution of basic equa-
tions in a plastic region .S), depends on the particular
yield regime. It appears that in the present case the
stress strain state in a plastic region of the plate cor-
responds to the sides AD or DC of the square yield
condition (Fig. 2). Let us consider these yield regimes
in a greater detail.

In the case of the yield profile C'D one has m; =
—v; for p € Sp; C (aj,a;4+1). However, it can be
rechecked (see [1, 3, 8]) that this regime can not take
place at a region of finite length.

If the stress profile lies on the side AD of the yield

square (Fig. 2) then ms = —y; and after integration
of (12) with (18) one has
2
p(p Ej
=—v—=|=-1 — 19
my TG < 3 > + p (19)

for p € S);, where E; is an arbitrary constant.
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Figure 4: Bending moment my; stage I.

According to the flow law in the case of the yield
regime AD one has k; = 0 and thus
w = Aj 14 + Bj (20)

for p € Sp;, where A;, B; are arbitrary constants.
However, on the side C'D of the yield condition
(Fig. 2) ko = 0 and thus w = const. This is one of

the reasons why the regime C'D does not take place in
a region of finite length.

5 The pure elastic stage of deforma-
tion (stage I)

As the intensity of the pressure loading is increased
from zero, the entire plate is elastic until the stress
profile reaches a side of the yield condition. However,
during the elastic stage the stress profile lies inside the
square ABC'D (Fig. 2) for each p € (a;, aj41).
During this stage of loading the deflection is de-
fined by (13), bending moments and the shear force by
(14) and (18), respectively. For determination of un-
known constants one can use the boundary conditions
w'(a) = w(a) = 0, m1(1) = 0 and the continuity
requirements
[w(ay)] =0, [W(a;)] =0, [mi(a;)]=0 2D
for j = 1, ..., n where the square brackets denote
finite jumps, e. g. [2(a;)] = z(a; +0) — z(e; — 0).
It appears that the general solution in the form
(13) may involve inadequate solutions for particular
cases. In order to avoid this one has to check if the
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Figure 5: Bending moment my; stage III.

shear force in the form (18) concides with that follow-
ing from the first equation of the system (2).
Let us denote

pq = (pm1)’ — ma. (22)

Evidently, § = q. Thus one has to check if the con-
straints

a(p) = a(p) (23)
for p € S¢; (7 = 1, ..., n) with the boundary condi-
tion g(1) = 0 are satisfied. Making use of (13) - (16)
and (18) with (22) it is easy to show that equalities
(23) take place if

p

A = —— 24
1 8d] ( )

forj=0,...,n.
Thus, for determination of 3n + 3 unknown con-
stants Agj, Asj, Ag; (j = 0, ..., n) one has three

boundary conditions and 3n continuity conditions
2.

The elastic loading stage completes at the mo-
ment when the stress profile reaches the side C'D of
the yield square. In the case of a plate of constant
thickness the plastic yielding happens at first at the in-
ternal edge of the plate for p = «. At the boundary
between the fully elastic stage and inelastic stage for
P =Do

mi(a) = —0. (25)

Note that, in principle, the plastic yielding may
start elsewhere, as well. If, for instance, the inner
annulus is very narrow and the thickness hg is large
whereas the next annulus has very small thickness
then the yield can start from the next annulus. How-
ever, these cases will not studied in the present paper.
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Figure 6: Bending moment mo; stage I.

6 Elastic plastic stage with the hinge
circle (stage II)

Assume that during this stage of deformation the plas-
tic hinge circle is located at the internal edge of the
plate and the rest of the plate for p # « is elastic
as during the previous stage. However, due to the
hinge the boundary condition w’(a)) = 0 is no more
valid. For determination of unknown constants As;,
Asj, Ayj one can use relations (21) - (23) with bound-
ary conditions w(«) = 0, m1(1) = 0 and (25). Note
that (24) remains valid, as well. The latter admits to
present the deflection for p € [, ajy1] as

_ pp*(p* — 8Inp)

2 A .
64d; +Agip°+As;In p+Ay;. (26)

w

This stage of determination will be completed
when the stress profile at p = « reaches the point D
(Fig. 2) so that ma(«) = —p. Let the corresponding
value of the external load intensity be p;.

7 The elastic plastic stage with a
plastic region of finite length (stage
I1I)

It is reasonable to assume that during the subsequent
increasing of the transverse pressure plastic deforma-
tions take place for p € Spo. Assume that Spy = [cv, 7]
where 7) is a previously unknown constant. The plastic
region corresponds to the yield regime DA (Fig. 2).
Thus, for p € (o, n)

mz = =Y. 27
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Figure 7: Bending moment m2; stage II.

The distribution of the radial bending moment m;
can be calculated by (19) taking j = 0. Asat p = a,
my = —p the arbitrary constant Fj is to be

2
Bo=22(% _1).
2 \ 3

Thus the bending moment is defined as

2 2

p(r ap [«
=—p-(E-1)+2E(=-1) @
m1 Y0 2<3 >+2p<3 )(9)

for p € [a, 7).

(28)

8 Numerical results

Results of calculations in the case of plates with a sin-
gle step are presented in Fig. 3 — 8. The results regard
to the plate with inner radius ¢ = 0.2R. The stress
profiles on the plane of moments mj, my are shown
in Fig. 3 for different values on the load intensity. It
can be seen from Fig. 3 that the profiles correspond-
ing to smaller values of the load p lie wholly inside
the square |m;| < 1, [ma| < 1. When the load in-
tensity increases until p = p; the end of the profile
reaches the side m; = —1 and for p = ps the cor-

ner point where m; = mo = —1. During the subse-
quent growth of the load intensity the end of the stress
profile lies on the side mo = —1 as it was expected
theoretically.

Distributions of the bending moments m; and my
are presented in Fig. 4 — 5 and Fig. 6 — 8, respectively.
The locations of boundaries between elastic and plas-
tic regions in Fig 5 are shown by asterisks. It can be



seen from Fig. 7 that when the load increases the stress
state tends to the pure plastic state. In the case of
a plate of constant thickness in the pure plastic state
mg = —1. In the case of a stepped plate it can be such
that mg = —v; for p € (¢j,0541), 5 =0, ..., n..
However, the question which is the stress state at the
plastic collapse can be answered by the limit analysis
of the plate of particular shape.

9 Concluding remarks

A method for theoretical investigation of axisymmet-
ric plates subjected to the distributed transverse pres-
sure was developed. The material of plates was as-
sumed to be an ideal elastic plastic material obeying
the square yield condition and the associated flow law
in the range of inelastic deformations. In order to get
maximum simplicity of the posed problem hardening
of the material as well as geometrical non-linearity of
the plate behavior were neglected.

It was assumed that the plates under considera-
tion had piece wise constant thickness with arbitrary
number of steps. Exact solutions were developed for
the case when the plate is clamped at the inner edge
whereas the outer edge is absolutely free. As a re-
sult of the solution procedure a succession of stress
states which are in equilibrium with the external load-
ing were constructed that led from the wholly elastic
to the elastic plastic state and finally to the plastic col-
lapse state. Since a plate of variable thickness can be
approximated with an appropriate choice of the piece
wise constant thickness the present solution technique
is applicable for approximate solution of similar prob-
lems in the cases of plates of variable thickness.
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