
Abstract

An optimization technique is developed for circular plates of piece wise constant thickness. The
plates under consideration have been manufactured of an ideal elastic plastic material obeying Tresca’s
yield criterion. Necessary optimality conditions are derived with the aid of the theory of optimal con-
trol. Obtained system of differential-algebraic equations is solved numerically in the case of the plate
with single step of the thickness. Effectiveness of the design is assessed numerically.

Keywords: circular plates, optimization, minimum weight, elastic-plastic material, Tresca’s con-
dition
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1 Introduction
Thin-walled plates and shells are important structural elements. These elements are widely used in
the civil engineering, aeronautics and in various fields of technology. In the available literature a lot
of attention is paid to optimization of plates and shells made of either pure elastic or ideal inelastic
materials (Cherkaev, 2000; Kaliszky, 1989; Lellep and Mürk, 2008; Zyczkowski, 1992). However,
there are only a few papers dedicated to optimization of structural elements made of elastic-plastic
materials. On the other hand, elastic plastic analysis of circular and annular plates has deserved the
attention of investigators during many years (Hodge, 1981; Kaliszky, 1989; Chakrabarty, 2000; Yu,
Zhang, 1996).

It is intresting to remark that in the earlier investigations plates made of a von Mises material are
studied (Sokolovsky, 1969; Eason, 1961; Popov et al, 1967). Later various numerical methods are
suggested by Gorji and Akileh (1990), Ohasi and Murakami (1967).

Bending of elastic plastic axisymmetric plates made of a Tresca material was studied by Hodge
(1981), Haythornthwaite (1954). Calladine (1968) suggested a simplified method for large deflec-
tion analysis in the case of an elastic plastic material. Ehakrabarty (1968) presented an approximate
solution for a clamped circular plate deformed by a concentrated load acting at the center whereas
Mazumdar and Jain (1989) developed a solution procedure for plates of arbitrary shape.

Recently Upadastra et al (2006) suggested the elastic compensation method for investigation of
elastic plastic circular and annular plates subjected to axisymmetric loadings.

Kaliszky and Logo (2002, 2006) presented a layout and shape optimization method for optimiza-
tion of elastic-plastic disks in the presence of constraints on displacements and deformations. In
(Kaliszky and Logo, 2003, 2006) methods for optimal design of elastic plastic structures subjected to
short time dynamic pressure or impact loading were suggested. Lepik (1994) considered elastic plas-
tic stepped beams under distributed dynamic pressure. In (Lepik, 1995)the optimal layout of internal
supports to a beam under quasi-static transverse loading was established.

In the present paper we develop an optimal project for a stepped circular plate. The plate is
made of an ideal elastic plastic Tresca material and loaded with the uniformly distributed transverse
pressure. Necessary optimality conditions are derived with the aid of the theory of optimal control
(Bryson and Ho, 1975; Hocking, 2001; Hull, 2003).

2 Formulation of the problem
Consider a circular plate of radius R subjected to the uniformly distributed transverse pressure of
intensity P. Let the plate be simply supported at the edge. We are treating the plate as a structure
consisting of two carrying metallic layers and of a core material between the rims. The thickness of
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the core is constant over the plate and equals to H. However the thickness of carrying layers h is piece
wise constant whereas

h = h j, r ∈ [a j, a j+1]; j = 0, . . . , n.

Here h j ( j = 0, . . . , n) and ai (i = 1, . . . , n) stand for unknown constant and r is the current radius.
The system of polar coordinates with the origin O located at the centre of the plate is used. However,
the strain-stress state of the plate is assumed to be symmetric. Thus the polar angle Θ is unnecessary
in the present case. the number of steps n is assumed to be fixed preliminarity.

The behaviour of the plate structure under transverse loading is modelled as ideal elastic-plastic
bending. Work hardening of the material will be neglected.

The aim of this paper is to establish the minimum weight design of the plate in the range of elastic
plastic deformations for constrained deflections. when minimising the weight of the plate, governing
equations of the plate theory will be taken into account.

Evidently, instead of the weight one can minimize the material volume of carrying layers. The
volume of carrying layers can be expressed as

V = π[h0a2
1 +

n∑
j=1

h j(a2
j+1 − a2

j)], (1)

provided an+1 = R.

3 Governing equations
In the bending theory of thin plates internal stress state at each point of the plate is defined by bending
moments M1 and M2 in radial and circumferential directions respectively. According to equilibrium
conditions of a plate element bending moments have to satisfy equilibrium equation (Chakrabarty,
2000; Reddy, 2007) 

d
dr

(rM1) − M2 = rQ,

d
dr

(rQ) = −Pr.
(2)

Geometrical relations have the form

κ1 = −
d2W
dr2 ,

κ2 = −
1
r

dW
dr

,

(3)

where W stands for the tranverse deflection and κ1, κ2 are components of the curvature.
In an elastic region Hooke’s law holds well. According to Hooke’s law (Reddy, 2007; Ventsel and

Krauthammer, 2001)
M1 = D j(κ1 + νκ2),

M2 = D j(κ2 + νκ1).
(4)

Here E is the Young modulus, ν stands for the Poisson’s modulus and

D j =
Eh jH2

2(1 − ν2)
(5)
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Figure 1: Tresca’s yield hexagon.

in the case of a sandwich plate.
It is assumed that the behaviour of the material in plastic stage corresponds to Tresca’s yield

condition (Fig. 1) and to associated gradientality law (Chakrabarty, 2000; Kaliszky, 1989). The latter
means that if the stress point is lying at an edge of Tresca’s hexagon then the vector of curvatures with
components (3) is directed towards external normal to the edge. It will be shown that in the case of
a circular plate subjected to undirectional transverse loading the yield regime M2 = M0 takes place,
where M0 stands for the yield moment. It is well known that M0 = σ0hH, σ0 being the yield stress
of the plate material.

If the stress state of the plate corresponds to an internal point of the side BC of the yield hexagon,
then according to the gradientality law κ̇1 = 0, κ̇2 ≥ 0. Thus

d2Ẇ
dr2 = 0

in this case.
If the stress strain state of the plate in certain region corresponds to a non-regular point of the

yield curve (for instance, the corner point B in Fig. 1), then the strain rate vector lies inside the angle
formed by external normals to crossing sides.

Note that if the stress strain state corresponds to an interiour point of the yield hexagon (Fig. 1)
then the plate material remains elastic in this region and Hooke’s law holds good.

Although being of piecewise constant thickness the carrying layers are relatively thin. Therefore
stress distributions across the thickness can be considered as constants and the stress state can be
either elastic or pure plastic; no elastic-plastic state occurs.

It is reasonable to introduce following non-dimensional quantities

ρ =
r
R
, m1 =

M1

M∗
, m2 =

M2

M∗
, k =

M∗R2

HD∗
,

α =
a j

R
, p =

PR2

6M∗
, w =

W
H
, γ j =

h j

h∗
,

(6)

where h∗ is the thickness of carrying layers of the reference plate. In the present study we take h∗ = h0
whereas M∗ = σ0h∗H. The parameters a j stand for the radii of steps.
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Making use of (2) - (6) one can present the set of governing equations in the elastic region as

w′ = z,

z′ = −
km1

γ j
−
ν

ρ
z,

m′1 =
(ν2 − 1)γ j

k
z
ρ2 −

m1

ρ
(1 − ν) − pρ,

(7)

for ρ ∈ (α j, α j+1); j = 1, . . . , n. In the plastic region according to the flow law w′′ = 0. Moreover, at
each point of the central region equilibrium equations must be satisfied. Thus

w′ = z,

z′ = 0,

m′1 =
1
ρ

(γ j − m1) − 3pρ

(8)

hold good in a plastic region for ρ ∈ (α j, α j+1).
Let us consider the case when η ≤ α1 in a greater detail. Integrating the system (8) yields

w = Aρ + w0,

z = A
(9)

and
m1 = γ0 − pρ2, (10)

where the boundary conditions
w(0) = w0,

m1(0) = m2(0) = γ0
(11)

have been taken into account. Thus, for η ≤ α1 one has

w(η) = Aη + w0 (12)

and
m1(η) = γ0 − pη2. (13)

If, however, η > α1 then it follows from (8) and (11) that variables w and z satisfy (9), as previ-
ously. However, for determination of the bending moment m1 one has to use equations

m′1 =


1
ρ

(γ0 − m1) − 3pρ, ρ ∈ (0, α1),

1
ρ

(γ1 − m1) − 3pρ, ρ ∈ (α1, η).
(14)

Integrating these equations and satisfying the continuity condition m1(α−) = m1(α+) with (11) one
obtains

m1 =


γ0 − pρ2, ρ ∈ (0, α1),

γ1 + (γ0 − γ1)α1 − pρ2, ρ ∈ (α1, η).
(15)

Thus, according to (15)
m1(η) = γ1 + (γ0 − γ1)α1 − pη2 (16)
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in this case.
One has to take into account that A and η in (9) - (16) stand for unknown parameters.
The problem posed above will be considered as an optimal control problem with state equations

(7), (8) and the cost function (1). Assuming that α0 = η one can present the performance index as

J = γ0η
2 +

n∑
j=0

γ j(α2
j+1 − α

2
j). (17)

The edge of the plate is simply supported. Therefore

w(1) = 0, m1(1) = 0. (18)

4 Necessary optimality conditions
For the sake of simlicity let us consider the case where n = 1 and η ≤ α (in this case indexes may be
omitted and α1 = α).

In order to minimise (17), where n = 1 under constaints (7) - (16) let us introduce an exended
functional (Hull, 2005; Lellep and Mürk, 2008; Bryson and Ho, 1975)

J∗ = γ0α
2 + γ1(1 − α2) +

∫ α

η

{
ψ1(w′ − z) + ψ2

(
z′ +

km1

γ0
+
ν

ρ
z
)
+

+ψ3

[
m′1 − γ0(ν2 − 1)

z
kρ2 +

m1

ρ
(1 − ν) + pρ

]}
dρ+

+

∫ 1

α

{
ψ1(w′ − z) + ψ2

(
z′ +

km1

γ1
+
ν

ρ
z
)
+

+ψ3

[
m′1 − γ1(ν2 − 1)

z
kρ2 +

m1

ρ
(1 − ν) + pρ

]}
textdρ+

+λ1[w(η) − Aη − w0)] + λ2[z(η) − A] + λ3[m1(η) − γ0 + pη2].

(19)

In (19) ψ1, ψ2, ψ3 stand for adjoint variables and λ1, λ2, λ3 are unknown Lagrange’ multipliers.
Necessary optimality conditions of the functional (19) can be presented as ∆J∗ = 0 where ∆J∗ is

the total variation of the functional J∗. When calculating total variations one has to follow the samples
(see Lellep, 1991; Lellep, Puman, 2007; Lellep, Mürk, 2008; Lellep, Tungel, 2005)

∆
∫ α

η
Fdρ = δ

∫ α

η
Fdρ + F|ρ=α · ∆α − F|ρ=η · ∆η,

∆
∫ 1
α

Fdρ = δ
∫ 1
α

Fdρ − F|ρ=α · ∆α
(20)

and
∆y(α ± 0) = δy(α ± 0) + y′(α ± 0) · α,

∆y(η) = δy(η) + y′(η) · ∆η
(21)

where
y(α ± 0) = lim

ρ→α±0
y(ρ).

Here y stands for a state variable (in the present case the state variables are w, z and m1) and δy is the
weak variation of the variable y.
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Calculating the total variation of (19) and integrating by parts terms ψ1δw′, ψ2δz′ and ψ3δm′1 one
obtains

∆J∗ = α2∆γ0 + 2γ0α∆α + (1 − α2)∆γ1 − 2αγ1∆α+

+

∫ α

η

{
− ψ′1δw − ψ1δz − ψ′2δz+

+ψ2

 k
γ0
δm1 −

km1

γ2
0

∆γ0 +
ν

ρ
δz

 − ψ′3δm1+

+ψ3

[
(1 − ν2)γ0

kρ2 δz +
(1 − ν2)z

kρ2 ∆γ0 +
1 − ν
ρ

δm1 + ρδp
]}

dρ+

+

∫ 1

α

{
− ψ1δw − ψ1δz − ψ′2δz+

+ψ2

 k
γ1
δm1 −

km1

γ2
1

∆γ1 +
ν

ρ
δz

 − ψ′3δm1+

+ψ3

[
(1 − ν2)γ1

kρ2 δz +
(1 − ν2)z

kρ2 ∆γ1 +
1 − ν
ρ

δm1 + ρδp
]}

dρ+

+(ψ1δw + ψ2δz + ψ3δm1) |α−η +(ψ1δw + ψ2δz + ψ3δm1)|1α++

+λ1[∆w(η) − A∆η − η∆A] + λ2[∆z(η) − ∆A]+

+λ3[∆m1(η) − ∆γ0 + 2pη∆η] = 0.

(22)

Since δw, δz, δm1 are arbitrary variations of state variables, it immediately follows from the equation
(22) that the adjoint equations

ψ′1 = 0,

ψ′2 = −ψ1 +
ν

ρ
ψ2 +

(1 − ν2)γ j

kρ2 ψ3,

ψ′3 =
k
γ j
ψ2 +

1 − ν
ρ

ψ3,

(23)

hold well for ρ ∈ S j, where j = 0, 1. Here S 0, S 1 stand for regions [η, α] and [α, 1] respectively.
Similarly one obtains from (22) that

α2 +

∫ α

η

− k
γ2

0

ψ2m1 +
ψ3z
kρ2 (1 − ν2)

 dρ − λ3 = 0 (24)

and

1 − α2 +

∫ 1

α

− k
γ2

1

ψ2m1 +
ψ3z
kρ2 (1 − ν2)

 dρ = 0 (25)

Note that the state variables w, z, m1 are continuous at each ρin[η, 1]. Thus the total variations of
state variables must be continuous, as well. Therefore,

∆w(α−) = ∆w(α+) = ∆w(α),
∆z(α−) = ∆z(α+) = ∆z(α),
∆m1(α−) = ∆m1(α+) = ∆m1(α).
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Substituting the variations δw(α ± 0), δz(α ± 0), δm1(α ± 0) in (22) and taking (23) - (25) into
account leads to the equation

(2αγ0 − 2αγ1)∆α + ψ1(α−)(∆w(α) − w′(α−)∆α)+
+ψ2(α−)(∆z(α) − z′(α−)∆α)+
+ψ3(α−)(∆m1(α) − m′1(α−)∆α) − ψ1(α+)(∆w(α) − w′(α+)∆(α))−
−ψ2(α+)(∆z(α) − z′(α+)∆(α)) − ψ3(α+)(∆m1(α) − m′1(α+)∆α)−
−ψ1(η)(∆w(η) − w′(η)∆(η)) − ψ2(η)(∆z(η) − z′(η)∆η))−
−ψ3(η)(∆m1(η) − m′1(η)∆η) + ψ1(1)∆w(1) + ψ2(1)∆z(1) + ψ3(1)∆m1(1)+
+λ1(∆w(η) − A∆η − η∆A) + λ2(∆z(η) − ∆A)+
+λ3(∆m1(η) − ∆γ0 + 2pη∆η) = 0.

(26)

In (26) the total variations of state variables ∆w(η), ∆z(η), ∆m1(η) as well as ∆z(1), can be considered
as independent variations (see Bryson, Ho, 1975; Hull, 2003). Note that due to the boundary condi-
tions m1(1) = 0, w(1) = 0 the variations ∆m1(1) and ∆w(1) vanish. Arbritrary are also the variations
∆w(α), ∆z(α), ∆m1(α). Thus one easily obtains from (26) the tranversality condition

ψ2(1) = 0, (27)

continuity conditions of adjoint variables

ψi(α − 0) = ψi(α + 0) (28)

for each i = 1, 2, 3 and
ψi(η) = λi. (29)

Finally, due to the independence of ∆A and ∆η one obtains

λ1η + λ2 = 0 (30)

and
[2λ3 pη + ψ2(η)z′(η+) + ψ3(η)m′1(η)] |η+0= 0. (31)

Finally, substituting (27) - (31) in (26) yields

2(γ0 − γ1)α − ψ2(α)z′(α−) − ψ3(α)m′1(α−)+
+ψ2(α)z′(α+) + ψ3(α)m′1(α+) = 0.

(32)

Note that when deriving (32) continuity of adjoint variables (28) has been taken into account.

5 Optimal design of the plate
In order to determine optimal parameters of the stepped plate one has to integrate state equations (7),
(8) and adjoint equations (23) while satisfying appropriate boundary conditions. Subsequently one
has to define the design parameters and Lagrange’ multipliers from the system consisting of equations
(24) - (32).

In order to solve the state equations (7) let us express from the third equation in (7)

z =
k

(ν2 − 1)γ j
(ρ2m′1 + ρm1(1 − ν) + pρ3). (33)
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Differentiating (33) with respect to ρ and making use of (7) yields the equation

m′′1 +
3
ρ

m′1 = −p(3 + ν). (34)

Evidently, the general solution of (34) can be presented as

m1 = −
p
8

(3 + ν)ρ2 −
F j

2ρ2 + G j (35)

where F j and G j are arbritrary constants.
Making use of (35) one can easily solve the system (7) to get

w =
k
γ j

 F j

2(ν − 1)
ln ρ −

G jρ
2

2(ν + 1)
+

p
32
ρ4

 + H j,

z =
k
γ j

[
F j

2ρ(ν − 1)
−

G jρ

ν + 1
+

p
8
ρ3

]
,

(36)

for ρ ∈ S j, where j = 0, 1. Here F j, G j, H j ( j = 0, 1) stand for arbritrary constants.
Making use of (35), (36) and the continuity conditions w(α−) = w(α+); z(α−) = z(α+), m1(α−) =

m1(α+) after algebraic transformations one easily obtains

G1 =

[
γ0 +

3 + ν

α2 −
p

16
δ − (ν − 5)η2

]
(1 − α2)

α2 − β(1 − α2)
;

F1 = 2G −
p
4

(3 + ν);

H1 =
kG

2(1 + ν)γ1
−

kp
32γ1

;

G0 =
G

2α2

[
2βα2η2

η2 − α2 − 2(1 − α2)
]
−

p
16α2

{
γ0

γ1
[(1 + ν)(3 + ν)−

−α4(ν2 − 1)] + (ν − 1)[3 + ν − α4(ν + 1)]
}
;

F0 =
2α2η2G
η2 − α2 β −

p
8

{
(1 + ν)γ0

γ1
[3 + ν + α4(1 − ν)]+

+(ν − 1)[3 + ν − α4(1 + ν)]
}
;

H0 =
k

32(ν2 − 1)

{
G

[
32(1 + ν)

γ1
lnα + 16(ν − 1)(1 − α2)

(
1
γ0
−

1
γ1

)
−

−
16α2η2

γ0(η2 − α2)
β(2(1 + ν) lnα − ν + 1)

]
+

p(ν − 1)
γ0

[(3 + ν − α4(ν + 1))·

·(2(ν + 1) lnα − ν + 1) − 4 − α4γ0(ν + 1)] +
p(ν + 1)
γ1

[(2(ν + 1) lnα−

−ν + 1)(3 + ν − α4(ν + 1)) − 4(3 + ν) lnα + (ν − 1)(α4 − 1)]}.

(37)

In (37) one has denoted G = G1 and

δ =
η2 − α2

2α2η2

[
(1 + ν)(3 + ν) + α4(1 − ν)

γ0

γ1
+ (1 − ν)(3 + ν − α4(1 + ν)

]
,

β =
η2 − α2

2α2η2

{
(1 − ν)(1 − α2) +

[
α2(1 − ν) + 1 + ν

] γ0

γ1

}
.

(38)
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6 Solution of the adjoint (conjugate) system
In order to solve the adjoint system (23) one can determine from (23)

ψ2 =
γ j

k

(
ψ′3 −

1 − ν
ρ

)
ψ3 (39)

Substituting ψ2 and ψ′2 from (39) to (23) leads to the equation

ψ′′3 −
ψ3

ρ
= −

ψ1k
γ j

(40)

which can be integrated to give

ψ3 = −
ψ1k
γ j

(
ρ2

2
ln ρ −

ρ2

4

)
+

B j

2
ρ2 + E j. (41)

Accounting for (41) one can solve the rest of the set (23). The solution can be presented as

ψ1 = C,

ψ2 =
C
4
ρ[−2 ln ρ(1 + ν) + ν − 1] +

γ j

k

[
ρ

2
B j(1 + ν) +

1
ρ

(ν − 1)E j

]
, (42)

C, B j, E j being arbritrary constants of integration. These constants will be determined by the help of
boundary conditions w(1) = 0, m1(1) = 0 also (9), (10) and continuity requirements at ρ = α.

For determination of B j, C j, E j ( j = 0, 1) in (41), (42) the tansverslity condition (27) with con-
tinuity conditions (28) and requirements (29) - (31) can be used. Note that the relations (29) - (31)
provide two algebraic equations with respect to B j, C j, E j after elimination of λi = ψi(η) and w′(η),
z′(η), m′1(η) from (30), (31).

7 Discussion
The system of algebraic and differential equations obtained above is solved numerically up to the end.
Results of the calculations are presented in Fig. 2 in the case of the plate with a single step of the
thickness. In Fig. 2 optimal values of α = a/R and γ = h/h∗ are presented versus w0

kp =
3H(5+ν)
32(1+ν) .

8 Concluding remarks
An optimization method relying on the theory of optimal control was developed for circular plates of
piece wise constant thickness. The behaviour of the material was assumed to be ideally elastic-plastic.
Numerical solution was calculated for simply supported stepped plates with single step of thickness.

The results of calculations showed that considerable economy of material consumption can be
achieved when using the design with piece wise constant thickness.
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