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INTRODUCTION

The reduction of the structural compliance of thin walled beams, plates and shells is
often the primary concern in the engineering mechanics. The need for reduction of
the compliance and the increase of the structural stiffness is related to the use of light-
weight structures which are less material consuming than the traditional structures.

It is wellknown that the structural material is used in more efficient manner and
the ratio of the strength to weight is larger if inelastic deformations are taken into
account when designing the structure. Although the early results of the behaviour of
elastic plastic circular and annular plates have obtained a long ago by Naghdi [72],
Hodge [27], Tekinalp [93] the most of the attention is paid to plates of constant thick-
ness only. Comprehensive reviews of these investigations can be found in the books
by Chakrabarty [11], Cohn [15], Kaliszky [35], Save et al [86], Yu and Zhang [109].
Hodge [29] introduced an essential simplification of inelastic problems in the case
of a Tresca material making use of the yield surface consisting of two hexagons on
the planes of moments and membrane forces, respectively. It was used by many in-
vestigators for getting approximate solutions. Among others, Sherbourne, Srivastava
[89] found an analytical solution to the elastic plastic bending problem in the range
of large deflections.

The exact analysis of elastic plastic plates is quite complicated. This involves the
need for physically reasonable simplifications. An effective simplification is intro-
duced by Haythornthwaite [25] and Tekinalp [93, 94]. Haythornthwaite suggested
to assume that any plate element is either entirely elastic or entirely plastic. This
assumption is fulfilled in the case of a sandwich plate consisting of two carrying lay-
ers and of a core material between the rims. Haythornthwaite [25] investigated the
elastic plastic bending of an annular plate loaded by the central absolutely rigid boss.
The plate is clamped to the boss at the inner edge and simply supported at the outer
edge. An exact theoretical solution is derived for a plate made of a Tresca material.

Tekinalp [93] studied the circular plate simply supported at the edge and sub-
jected to the uniformly distributed transverse pressure. The solution for a plate
clamped at the outer edge was obtained a little later by Tekinalp [94]. The solu-
tions in both cases consist of the initial elastic stage and several subsequent elastic
plastic stages of deformation.

The complete elastic plastic analysis of centrally clamped annular plates carrying
uniformly distributed transverse loading was undertaken by French [19] within the
frame works of the pure bending theory of thin plates. Exact stress profiles lying
partly inside and partly on the yield hexagon are developed for the elastic and elastic
plastic stages of the deformation. It is assumed by French [19] that the plate is a

7



sandwich construction and that the material of carrying layers obeys the Tresca yield
condition. The elastic plastic bending of circular and annular plates made of a Tresca
material was also studied by Hodge [27, 28].

Elastic plastic deformations of axisymmetric plates made of a von Mises material
are investigated by Eason [18], Sokolovsky [90], Lackman [39], Popov et al [80],
Turvey [96], Turvey and Lim [97], Turvey and Salehi [98], Ohashi, Murakami and
Endo [74, 75].

The classical concept of an elastic plastic body admits the exact definition of
yielding and of the yield-point load. It is shown earlier by Tekinalp [93], Hodge
[27] and others that in the case of the Tresca material and a plate subjected to the uni-
formly distributed transverse pressure of intensity p the onset of yielding corresponds

to the values of the pressure p =
16M0

R2(3 + ν)
and p =

8M0

R2
for simply supported and

clamped plates, respectively. Here ν is the Poisson ratio, R and M0 stand for the
radius of the plate and the yield moment of the material, respectively. The concept of
gradual yielding introduced by Richard and Abbott [84] for one-dimensional struc-
tures was extended to circular and annular plates by Upadrasta et al [100] and Khalili
and Peddieson [36].

Elastic plastic bending of axisymmetric plates in the range of large deflections
was investigated by Ohashi et al [75], Sherbourne and Srivastava [89], also Gorji
and Akileh [23], Turvey [95]. Stress and strain distributions in rotating disks made
of a Tresca material are determined by Güven [24] and Gamer [20]. In the cited
papers solid and sandwich plates and rotating disks are investigated assuming that the
material is an ideal elastic plastic material without strain hardening. Plates made of a
hardening material were studied by Boyce [8], Hwang [31], Tanaka [92]. Wen [108],
Kirs [37] considered work-hardening circular plates subjected to dynamic loading
under different circumstancies.

The use of the classical bending theory based on Kirchhoff hypotheses is justified
in the case of thin plates and homogeneous materials. In more complicated cases the
shear stresses must be taken into account as shown by Oblak [73], Nagai and Ito [71].
Sawczuk and Duszek [87] developed similar concept for ideal plastic plates.

Wang et al [104, 105] established designs of rigid-plastic solid plates with a max-
imum thickness constraint.

Reddy and Wang [83] investigated relationships between the classical pure bend-
ing theory and the shear deformation theory applied to the bending of circular and
annular plate. The full description of the shear deformation theory of plates and
shells can be found in the book by Wang et al [103]. A variational approach to shear
deformable plates within gradient elasticity is developed by Mousavi and Paavola
[68, 67].

One of the ways of increasing the stiffness of beams, plates and shells is to furnish
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these structural elements with additional supports. Evidently, it is reasonable to settle
these supports at the optimal positions.

The problem of minimization of the compliance of elastic beams and the deter-
mination of the optimal location of the additional support was first formulated by
Mróz and Rozvany [70]. In paper Mróz and Rozvany [70] designs of minimum com-
pliance of beams are established in the case of quasistatic loading. Later Szelag and
Mróz [91], Akesson and Olhoff [1], Chou et al [14] treated the problems of maximal
eigenfrequency for given stiffness with respect to the location of the additional sup-
port. Bojczuk and Mróz [6] developed a new method for simultaneous optimization
of topology, configuration and cross-sectional dimensions of elastic beams and beam
structures extending earlier results by Garstecki and Mróz [21], Mróz and Lekszycki
[69], also by Lepik [62]. In the subsequent papers by Bojczuk and Mróz [7] this con-
cept was applied for optimal design of active supports with force actuators. Olhoff
and Akesson [77] treated the stability of columns and Wang et al [106] studied the
buckling of axisymmetric plates.

A lot of attention has been paid in the literature to the optimization of internal
supports to beam, plate and shell structures in the case of inelastic materials. Probably
the first paper in this area is due to Prager and Rozvany [81]. Systematic reviews of
results obtained in earlier papers are presented by Rozvany [85], also by Lellep and
Lepik [47]. Optimal designs of circular cylindrical shells with additional supports
are established by Lellep [42, 45] in the case of dynamic loading and an ideal plastic
material. The behaviour of geometrically non-linear cylindrical shells with internal
supports is studied in [44, 43, 45, 48].

Optimal designs of axisymmetric plates and shells of various shape made of elas-
tic and inelastic materials are established in [51, 56, 57, 58, 59]. Inelastic spherical
and conical shells are studied in [56, 57, 58] whereas a stress strain analysis of an
annular plate made of an elastic plastic material is presented in [50].

A design sensitivity analysis for the deflection of beam or plate structures was
undertaken by Wang [107] in the case of simple supports located at given mesh nodes.
Stiffened sector plates are studied in [98].

In the present work an analytical method of determination of positions of rigid
ring supports for circular plates is developed. The analysis is confied to the axisym-
metric response of elastic plates to subjected loads.

Plates and shells are widely used in various fields of technology and engineering.
That is why it is very important to strive for the optimal shape of the plates, also
for the optimal lay out of supports and for the optimal distributions of stresses in
the structures.This enables to save the material of structures, provided the optimized
structure is able to carry the same loads as the original sample.The behaviour of plates
and shells in the range of elastic deformations has been studied by many authors (see
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Reddy [82], Vinson [102], Ventsel [101]).
The practical need for light weight structures has increased the importance of

investigations of composite materials, also sandwich plates and shells and of these
manufractured from composites. The foundations of the analysis and design of sand-
wich structures was developed by Allen [2] and Plantema [79]. The stability problem
of a three-layered plate with a soft core was solved by Pawlus [78]. The critical
loads are obtained analytically and numerically. Elastic circular sandwich plates sub-
jected to the ring load have studied by Magnucki et al [65]. The comparison of the
analytical, numerical and experimental results reveals small discrepancies between
theoretical predictions and experimental data. These are probably due to the approx-
imate determination of the mechanical properties of the core material. The influence
of shear forces on the bending of circular plates was studied by Reddy and Wang
[83].

There exists a large number of books dedicated to the foundations of composite
materials. It is worthwhile to mention among others the books by Herakovich [26],
Jones [33], Daniel and Ishai [16], Gibson [22], Andreev and Nemirovskii [3], Tuttle
[99].

Researchers and engineers encounter often the need for the optimization of struc-
tural elements in order to produce cheaper details and save materials. The problems
of optimization of thin-walled plates and shells are investigated by Banichuk [4],
Bendsøe [5], Kirsch [38], Cherkaev [13], Melerski [66], Olhoff [76, 12] in the case
of elastic materials. The essential benchmark problems of this kind are presented in
the books by Lellep [46], Brandt [9].

The optimization of structural elements made of inelastic materials got its start

by establishing the Drucker-Shield criterion in the form
D

h
= const where D is the

dissipation of the internal energy and h stands for the thickness of the plate (Drucker
and Shield [17]). The Drucker-Shield criterion is based on the lower and upper bound
theorems of limit analysis. In its original form it holds good in the case of ideal rigid
plastic structures. This approach to the optimal design of structural elements is called
"the optimality criteria-based design".

Later various other approaches based on finite element method (FEM), variational
methods, principle of maximum and other methods are developed.

Lepik [60, 61] is a pioneer in the application of the principle of maximum in
the optimal design of rigid-plastic beams, plates and shells. In [60, 61] optimal de-
signs of inelastic circular plates are established for the collapse load assuming that
the thickness of the plate is constrained by given upper and lower bounds. Lepik
and Mróz [63, 64] developed new approaches to the optimal design of beams, plates
and shells subjected to the dynamic loading. The both cases, the impulsive loading
and the rectangular pressure loading of beams with piecewise constant thickness are
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investigated and the optimal designs corresponding to different optimality criteria are
developed.

Resorting to the principle of maximum optimal designs of circular plates sub-
jected to the concentrated load are developed by Lellep [40].

An approach to the optimal design of geometrically non-linear inelastic beams
and cylindrical shells is developed by Lellep [41, 44, 45] making use of the varia-
tional methods of the theory of optimal control. This method appeared to be very
effective in the determination of optimal locations of additional supports to beams
and cylindrical shells [42, 43].

The current thesis is devoted to the analysis and optimization of circular and
annular plates made of elastic plastic materials. It is assumed that the material obeys a
piecewise linear yield condition and the associated gradientality law. The dissertation
consists of five chapters.

In the first chapter of the thesis the governing equations for the analysis of ax-
isymmetric plates are presented, provided the material is an ideal elastic plastic ma-
terial.

In the second chapter the bending analysis of elastic plastic circular and annular
plates is undertaken in the cases of the Tresca’s yield condition and the diamond
condition, respectively. The results of Chapter 2 are published in [49, 53, 55].

The elastic plastic response of an annular plate to the transverse pressure is stud-
ied in the third chapter. It is assumed that the plate is clamped at the inner edge and
absolutely free at the outer edge. The results of Chapter 3 are published in [50].

In the fourth chapter an optimization procedure is developed for circular plates
with additional ring supports. The results of Chapter 4 are published in [51, 52].

The fifth chapter of the thesis is devoted to the analysis and optimization of
stepped plates made of an anisotropic composite material. The results of Chapter
5 are published in [54].

11



CHAPTER 1
BASIC EQUATIONS AND CONCEPTS

In this chapter the governing equations for thin plates are presented. This system
of equations consists of the equations of equilibrium and of the physical relations for
elastic and plastic regions for the thin-walled circular and annular plates. For the sake
of simplicity a thin-walled plate with constant thickness is considered.

1.1 Equations of equilibrium

We consider axisymmetric deformations of a circular plate subjected to the axisym-
metric transverse loading of intensity P = P (r). Here r is the current radius e. g. the
distance from the center of the plate. As we are studying the axisymmetric response
of the plate all points lying at the circle with radius r have common displacements
W (r) in the transverse direction as well as common deformations and curvatures κ1,
κ2 in the radial and circumferential directions, respectively. Note that the radial dis-
placement will be neglected in the present study since the classical equations of the
bending theory of thin plates will be used.

In the present study we shall employ the linear theory of thin plates (see Reddy

Prdrd

M
N

Q+dQ
dr

N

M

N

Q

d θ

M

M +dM

2

1

1

2

2

N +dN
11

2

11

z

r

θ

Figure 1.1: An element of the circular plate.
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[82], Vinson [102]). According to this approach one can treat the equilibrium of in-
ternal and external forces and couples on the basis of an undeformed element of the
plate. Let M1, M2 be the generalized couples called bending moments in the radial
and circumferential directions, respectively. Bending moments M1, M2 are the only
generalized stress components contributing to the internal energy. Note that the mem-
brane forces are assumed to be small so that one can neglect the membrane action of
internal forces. Although the shear force Q may be finite it does not contribute to
the internal energy in the classical plate theory. The reason is that the corresponding
strain component vanishes.

In the frameworks of the classical plate theory where axial symmetry is retained
the couplesM1,M2 with forcesQ and P form a system of forces and moments which
keep the element of the plate in equilibrium. The equilibrium conditions of the plate
element presented in Fig. 1.1 can be written as

d

dr
(rN1)−N2 = 0,

d

dr
(rM1)−M2 − rQ = 0,

d

dr
(rQ) + P (r)r = 0.

(1.1)

Note that in the following the influence of membrane forcesN1,N2 will be neglected.

1.2 Hooke’s law

If the material of the plate is an ideal elastic material the Hooke’s law holds good. In
the case of an isotropic elastic material The Hooke’s law reads

ε1 =
1

E
[σ1 − ν(σ2 + σ3)]; γ12 =

τ12
G

;

ε2 =
1

E
[σ2 − ν(σ1 + σ3)]; γ13 =

τ13
G

;

ε3 =
1

E
[σ3 − ν(σ1 + σ2)]; γ23 =

τ23
G
.

(1.2)

Here εj , γj (j = 1, 2, 3) stand for strain components whereas σj , τj (j = 1, 2, 3) are

stress components; E is the Young modulus, ν is Poisson ratio and G =
E

2(1 + ν)
.
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In the case of plane stress state when ε3 = 0, τ23 = σ3 = 0 one has

ε1 =
1

E
(σ1 − νσ2),

ε2 =
1

E
(σ2 − νσ1),

γ12 =
τ12
G

(1.3)

or in the inverted form as

σ1 =
E

1− ν2
(ε1 + νε2),

σ2 =
E

1− ν2
(ε2 + νε1),

τ12 = Gγ12.

(1.4)

The strain components can be expressed via displacements u, v,w in the direction
of coordinate axes, respectively. Making use of polar coordinates (now u is directed
in the radial direction and v in the circumferential direction) one has

ε1 =
∂u

dr
,

ε2 =
u

r
+

1

r

∂v

∂Θ
,

γ12 =
∂v

∂r
− v

r
+

1

r

∂u

∂Θ
.

(1.5)

In the case axisymmetric loading it is expected that the stress-strain state is also
axisymmetric, provided the boundary conditions at the edges of the plate are axisym-
metric. Now the displacements do not depend on the polar angle Θ and one has

ε1 =
du

dr
,

ε2 =
u

r
,

γ12 =
dv

dr
− v

r
.

(1.6)

According to Kirchhoff hypotheses one has (see Reddy [82], Vinson [102])

ε1 = zκ1,

ε2 = zκ2

(1.7)
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where z is the distance between a current point and the middle surface of the plate.
Principal curvatures κ1, κ2 can be expressed as

κ1 = −d
2W

dr2
,

κ2 = −1

r

dW

dr

(1.8)

where W is the transverse deflection or displacement in the z-axis of points lying on
the middle surface.

Let us introduce the generalized stresses (bending moments)

M1 =

∫ h
2

−h
2

σ1zdz,

M2 =

∫ h
2

−h
2

σ2zdz,

M12 =

∫ h
2

−h
2

τ12zdz

(1.9)

and the shear force

Q =

∫ h
2

−h
2

τ13dz. (1.10)

Substituting equations (1.4) with (1.7), (1.8) in (1.9) after integration one has

M1 = D(κ1 + νκ2),

M2 = D(κ2 + νκ1)
(1.11)

where

D =
Eh3

12(1− ν2)
(1.12)

in the case of a solid plate and

D =
EhH2

2(1− ν2)
(1.13)

in the case of a sandwich plate. In (1.13) H stands for the total thickness and h is the
thickness of carrying layers.

The stress strain state is determined according to equations (1.1). Substituting
equations (1.11), (1.8) in formula (1.1) leads to a fourth order equation with respect
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to the deflection W known from the theory of elastic plates (see Reddy [82], Vinson
[102], Ventsel and Krauthammer [101])

1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dW

dr

)]}
=
P (r)

D
. (1.14)

The general solution of this equation can be presented in the case P = const as

W =
Pr4

64D
+A1r

2 ln r +A2r
2 +A3 ln r +A4 (1.15)

where A1 – A4 are the integration constants.

1.3 Yield criteria

The theories of plasticity are based on experimental observations regarding the be-
haviour of inelastic materials. The experiments show that a rod in a simple tension
test remains elastic until the stress does not exceed a limit value, called the yield stress
σ0. In this thesis it is assumed that the stress strain curve can be approximated by two
straight lines shown in Fig. 1.2. Thus, according to this model a one-dimensional
body (a rod under tension) remains elastic if |σ| < σ0.

σ

ɛ

σ0

‒σ0

Figure 1.2: The stress-strain curve.

However, in the general case the stress state of a material element can be rep-
resented by a point in a nine-dimensional stress space with coordinates σij (i, j =
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1, 2, 3). Theoretical considerations and experimental investigations show that around
the origin of the stress space there exists a closed convex surface

Φ0(σ11, σ12, . . . , σ33) = 0 (1.16)

surrounding the region where elastic deformations take place. The points lying on
this surface correspond to the points of the body where plastic deformations occur.

ɛ·

ɛ·ɛ·

A

B
C

D

E F

M1
M0

M2
M0

Figure 1.3: Tresca’s yield hexagon.

M1
M0

M2
M0

Figure 1.4: Von Mises yield ellipse.
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In the case of axisymmetric thin-walled plates the yield surface (1.16) can be
expressed via bending moments as

Φ(M1,M2,M0) = 0 (1.17)

where M0 stands for the yield moment. Evidently

M0 =
σ0h

2

4
(1.18)

for solid plates and
M0 = σ0hH (1.19)

for sandwich plates.
The most often used yield conditions are the Tresca (Fig. 1.3) and Mises (Fig. 1.4)

conditions.

1.4 Associated flow rule

In the general case the yield criterion Φ ≤ 0 holds good. In an elastic region one has
Φ < 0 and in a plastic region Φ = 0. In the theory of plasticity it is shown that in a
plastic region of a body where Φ = 0 the strain rate vector ~̇ε is directed outwards the
yield surface (see Chakrabarty [11], Kaliszky [35], Sawczuk and Sokól-Supel [88]).
Thus

ε̇ij =
λ∂Φ0

∂σij
(1.20)

for i, j = 1, 2, 3. In equation (1.20) λ stands for a non-negative scalar multiplier and
the dot denotes the derivative with respect to time. Using the generalized stresses and
the yield surface in the form (1.17) one has

κ̇1 =
λ∂Φ

∂M1
,

κ̇2 =
λ∂Φ

∂M2

(1.21)

where κ1, κ2 stand for the curvatures.
At the non-regular points of the yield surface the strain rate vector is formed as

a linear combination with unknown coefficients of outward normals to the adjacent
portions of the yield surface.

Note that in the ”deformation theory” of plasticity instead of strain rate the strain
components themselves are used.

Let us consider the case when the behaviour of the material in plastic stage corre-
sponds to Tresca’s yield condition (Fig. 1.3) and to associated gradientality law in a
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greater detail. The latter means that if the stress point is lying at an edge of Tresca’s
hexagon then the vector of curvatures with components (1.8) is directed towards the
external normal to the edge. It will be shown that in the case of a circular plate sub-
jected to unidirectional transverse loading the yield regime M2 = M0 takes place,
where M0 stands for the yield moment.

If the stress state of the plate corresponds to an internal point of the side BC of
the yield hexagon, then according to the gradientality law κ̇1 = 0, κ̇2 ≥ 0. Thus

d2Ẇ

dr2
= 0 (1.22)

in this case. Making use of the deformation theory the general solution of the equa-
tion (1.22) can be presented as

W = Ar +B (1.23)

where A and B are the constants of integration.
If the stress strain state of the plate in certain region corresponds to a non-regular

point of the yield curve (for instance, the corner point B in Fig. 1.3), then the strain
rate vector lies inside the angle formed by external normals to crossing sides.

At the point B of the Tresca hexagon (Fig. 1.3) M1 = M2 = M0 and the associ-
ated yield law states that κ̇1 ≥ 0, κ̇2 ≥ 0. Thus the exact expressions of strain rates
remain unknown here.

Note that if the stress strain state corresponds to an interiour point of the yield
hexagon (Fig. 1.3) then the plate material remains elastic in this region and Hooke’s
law holds good.
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CHAPTER 2
BENDING OF ELASTIC PLASTIC PLATES

2.1 Preliminaries and basic hypotheses

Let us consider the quasistatic behaviour of an elastic plastic circular plate of radius
R under the lateral pressure of intensity P . It is assumed that the plate is of sandwich-
type consisting of carrying layers of thickness h and of a core material between the
rims. The thickness of the layer of the core material is H . We assume that

h = hj , (2.1)

for r ∈ (aj , aj+1); j = 0, . . . , n. The quantities aj , hj are treated as preliminary
known parameters. For the sake of convenience we take a0 = 0; an+1 = R (see
Fig. 2.1). The response of the plate to the external loading will be prescribed by the
classical plate theory. The generalized stress components contributing to the strain
energy are the bending moments M1, M2 in the radial and hoop direction defined
by (1.9). Corresponding strain components are the curvatures κ1, κ2 which can be
determined via the transverse deflection W = W (r). It is assumed that the radial

a1
a2

an
an+1

R

O

h0 h1 h2

hn-1 hn

P

r
H

Figure 2.1: Cross-section.

bending moment M1 as well as the shear force Q, deflection W and slope dW/dr
are continuous for each r ∈ (0, R). However, the deflection slope may have disconti-
nuities at sections where M1 = ±M0 (see Chakrabarty [11], Kachanov [34], Yu and
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Zhang [109]). It means that
[W (aj)] = 0,

[M1(aj)] = 0
(2.2)

and

(|M1(aj)| −M0)

[
dW (aj)

dr

]
= 0. (2.3)

In (2.2) and henceforth the square brackets denote finite jumps of discontinuous vari-
ables at the given point. According to this notation

[z(a)] = z(a+ 0)− z(a− 0) (2.4)

where z(a±0) stand for right-hand and left-hand limits of the variable z, respectively.

ϰ·

A

B

C

D

M1
M0

M2
M0

Figure 2.2: Diamond yield condition.

The aim of this chapter is to determine the stress strain state of the plate for the
initial elastic and subsequent elastic plastic stages of loading.
If the load intensity is high enough plastic deformations occur in certain regions.
Now the plate is divided into elastic and plastic regions. Let us denote these regions
Se and Sp, respectively. In a plastic region the stress state corresponds to a point
lying on the yield surface (or a yield curve). It is assumed that the yield condition can
be presented by the diamond ABCD shown in Fig. 2.2. Here M0j denotes the yield
moment. In the case of a sandwich plate with the rim thickness hj

M0j = σ0hjH, (2.5)
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σ0 being the yield stress of the material. Since M1 ≥ 0, M2 ≥ 0 in the most cases
one can assume that in the plastic region

M1 +M2 = M0j (2.6)

for r ∈ (aj , aj+1). Note that the diamond yield condition was suggested by Jones [3]
for approximate solution of dynamic problems of plastic plates.

According to the associate flow law on the side AB of the diamond one has
κ̇1 = κ̇2 where dots denote the differention with time or a time-like parameter.
Making use of (1.8) and the deformation-type theory of plasticity the gradientality
law results in the equation

d2W

dr2
− 1

r

dW

dr
= 0. (2.7)

2.2 Integration of governing equations in elastic regions

Assume that the portion of the plate for r ∈ (aj , aj+1) is in pure elastic stress strain
state. For determination of stresses, strains and displacement one has the equations
(1.1)–(1.11). Substituting (1.11) with the help of (1.8) in the equilibrium equations
(1.1) results in

1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dW

dr

)]}
=
P (r)

Dj
(2.8)

for r ∈ (aj , aj+1) where

Dj =
EhjH

2

2(1− ν2)
. (2.9)

This is true under the condition that this interval belongs to the set Se.
One can easily recheck that the general solution of the equation (2.8) is

W = A1jr
2 ln r +A2jr

2 +A3j ln r +A4j +
Pr4

64Dj
(2.10)

where A1j −A4j are arbitrary constants.
Calculating the bending moments according to (1.11) and making use of (1.8), (2.10)
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one eventually obtains

M1 = −Dj

{
Pr2(3 + ν)

16Dj
+A1j [2 ln r + 3 + ν(2 ln r + 1)]

+2A2j(1 + ν) +
A3j(ν − 1)

r2

}
,

M2 = −Dj

{
Pr2(1 + 3ν)

16Dj
+A1j [2 ln r + 1 + ν(2 ln r + 3)]

+2A2j(1 + ν) +
A3j(1− ν)

r2

}
.

(2.11)

2.3 Elastic stage of deformation

In the case of smaller values of the intensity of the transverse pressure the plate
remains elastic. In the elastic stage the stress strain state of the plate is defined by
(2.10) and (2.11). Let us consider now a particular case of the problem posed above
when n = 1 and the thickness distribution is

h =

 h0, r ∈ [0, a]

h1, r ∈ [a,R].
(2.12)

Let the applied loading be of constant intensity. For the concreteness sake let us
assume that the plate is simply supported at the edge. Thus at the boundary of the
plate

M1(R) = 0,

W (R) = 0.
(2.13)

According to (2.1) and (2.10) – (2.12) one has to take j = 0, if r ∈ [0, a] and
j = 1, if r ∈ [a,R].

Calculating the shear force for the elastic plate one reaches to the relation

Q =
1

r

(
d

dr
(rM1)−M2

)
. (2.14)

Substituting M1, M2 from (2.11) in (2.14) one can see that the shear force is contin-
ious all over the plate if constants A1j = 0.

Evidently, M1(0) must be finite. Thus it follows from (2.10) that A30 = 0. For
determination of the rest unknown constants A20, A40, A21, A31, A41, one can use
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Figure 2.3: Bending moments and deflections of the stepped elastic plate.
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the boundary conditions (2.13) and the continuity requirements (2.2), (2.3). Since
during the elastic stage M1 6= M0 one has

[W (a)] = 0,

[M1(a)] = 0,[
dW (a)

dr

]
= 0.

(2.15)

From the first equation in (2.13) one can express the constant

A21 =
−PR2(3 + ν)

32D1(1 + ν)
+
A31(1− ν)

2R2(1 + ν)
. (2.16)

Substituting the constant A21 from equation (2.16) in the second equation in (2.13)
one can determine

A41 =
PR4(5 + ν)

64D1(1 + ν)
− A31[1− ν + 2(1 + ν) lnR]

2(1 + ν)
. (2.17)

Making use of the continuity of the bending moment M1 at r = a in (2.15) and
equation (2.16) one can express

A20 =
−PR2(3 + ν)

32D0(1 + ν)
+
A31D1(1− ν)(a2 −R2)

2D0(1 + ν)R2a2
. (2.18)

Substituting the constants A20, A21 and A41 in the first equation in (2.15) one can
obtain

A40

=
P [a4(1 + ν)(D0 −D1) +R4D0(5 + ν) + 2R2a2(3 + ν)(D1 −D0)]

64D0D1(1 + ν)

+
A31{(1− ν)[(R2 − a2)D1 + a2D0] +D0R

2[2(1 + ν)(ln a− lnR)− 1 + ν]}
2D0(1 + ν)R2

.

(2.19)
Finally, making use of equations (2.18), (2.16) and the third equation in (2.15) one
can express

A31 =
Pa2R2(D1 −D0)[a

2(1 + ν)−R2(3 + ν)]

16D1{D0[a2(1− ν) +R2(1 + ν)] +D1(ν − 1)(a2 −R2)}
. (2.20)

Substituting (2.16) – (2.20) in (2.10) and (2.11) one can express the distributions
of deflections and bending moments for the elastic stage of deformation. These dis-
tributions are shown in Fig. 2.3 for different values of the transverse pressure. It can
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be seen from Fig. 2.3 that M1 and W are continuous for r ∈ [0, R] whereas the hoop
moment M2 is discontinuous at r = a (Fig. 2.3 corresponds to the case a = 0.5R;
R = 1 m).

2.4 Optimization of stepped elastic circular plate

The problem posed above consists in the minimization of the maximal deflection
W0 = W (0) under the condition that the material volume of the plate is constrained.

The deflection W (0) is a function of design parameters; W0 =
W0(a1, . . . , an, h0, . . . , hn). The constrained minimum of W0 can be defined em-
ploying the extended function

J∗ = W0(a1, . . . , an, h0, . . . , hn) + λ(V − V0) (2.21)

where λ is an unknown Lagrangian multiplier.
The necessary optimality conditions of (2.21) can be written as

∂J∗
∂ai

= 0; i = 1, . . . , n

∂J∗
∂hj

= 0; j = 0, . . . , n

∂J∗
∂λ

= 0.

(2.22)

The system (2.22) consists of 2n + 2 algebraic equations. These admit to determine
2n+2 unknown parameters ai (i = 1, . . . , n), hj (j = 0, . . . , n) and λ for each given
volume of the plate V0.

The efficiency of the design established above (see Table 2.1) is assessed by the
ratio

e =
W0

W∗
, (2.23)

W∗ being the deflection of the plate of constant thickness h∗ = V0h0. The values of
the coefficient e are accommodated in Table 2.1 together with optimal values α =

a

R

and γ =
h1
h0

. In the first column of Table 2.1 the values of the plate volume V0 =
V

π
are presented. It reveals from Table 2.1 that for smaller values of V0 the deflection
of the reference plate of constant thickness W∗ is larger, as might be expected. If V0
increases then the optimal value of α also increases. The maximal deflection of the
optimized plate decreases if the quantity V0 increases. One can see from the Table 2.1
that for V0 = 0.45 the optimal values of parameters α and γ are approximately
α = 0.4904, γ = 0.2759. In this case the maximal deflection of the stepped plate is
15% less than that of the reference plate of constant thickness.

26



Table 2.1: Optimal values of parameters.
V0 α γ Wo · 106 W∗ · 106 e

0.45 0.490363 0.275881 4.38282 5.15278 0.85057
0.50 0.549226 0.284027 3.86136 4.6375 0.83264
0.55 0.605052 0.290123 3.46249 4.21591 0.82129
0.60 0.658147 0.294337 3.15763 3.86458 0.81707
0.65 0.708775 0.296677 2.92554 3.56731 0.82010
0.70 0.757151 0.296968 2.74998 3.3125 0.83018
0.75 0.803436 0.294764 2.61823 3.09167 0.84687
0.80 0.847728 0.289161 2.5201 2.89844 0.86947
0.85 0.890033 0.278294 2.44735 2.72794 0.89714
0.90 0.930189 0.257875 2.39317 2.57639 0.92888
0.95 0.967623 0.21513 2.35191 2.44079 0.96358
0.99 0.99431 0.118785 2.32495 2.34217 0.99265

2.5 Solution of governing equations in plastic regions in the case of dia-
mond yield condition

In a plastic region one has to satisfy the equations (2.6), (2.7) and the equilibrium
equations (1.1). Integrating (2.7) one easily obtains

W = Ar2 +B, (2.24)

A and B being arbitrary constants. For determination of stress components one can
use equations (1.1) and (2.6). The second equation in system (1.1) gives after inte-
gration

Q = −1

r

∫
P (r)rdr + C1. (2.25)

It is worthwhile to mention that the shear force must be continuous for r ∈ [0, R].
However, the function P = P (r) can be discontinuous. In the particular case when
P (r) = const instead of (2.25) one has for r ∈ [0, R]

Q = −Pr
2

(2.26)

where the symmetry condition Q(0) = 0 has taken into account.
Substitution of equations (2.6) and (2.25) in (1.1) leads to linear differential equa-

tion
dM1

dr
+

2M1

r
=
M0j

r
− 1

r

∫
Prdr + C1 (2.27)
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for r ∈ (0, a). In order to find the general solution for equation (2.27) let us first
consider the corresponding homogeneous equation. Evidently, the general solution
of it has the form

Mh =
C

r2
. (2.28)

The method of variation of the constant in equations (2.27), (2.28) yields

C(r) =
M00r

2

2
−
∫ (

r · Pr
2

2

)
dr +

C1r
3

3
+ C2. (2.29)

Thus the radial bending moment in a plastic region (0, a) is defined as

M1 =
M00

2
− 1

r2

∫
Pr3

2
dr +

C1r

3
+
C2

r2
. (2.30)

Integration constants C1, C2 in equation (2.30) can be determined using the continu-
ity requirements of M1 at the boundary of a plastic zone. If, for instance, the plastic
region is located near the center of the plate for r ∈ [0, ηR] where η < 1 then evi-
dently C1 = C2 = 0 because otherwise the moment M1 is not limited. Thus in this
case

M1 =
M00

2
− Pr2

8
. (2.31)

Here M00 denotes the limit moment for the portion of the plate with thickness h0.
The circumferential moment can be found according to equations (2.6), (2.31) as

M2 =
M00

2
+
Pr2

8
. (2.32)

2.6 Elastic plastic solution in the case of diamond condition

During the subsequent increasing the load intensity the plate is divided into elastic
and plastic regions. Plastic deformations occur in the central part of the plate with
radius y. However, the outward part of the plate remains elastic. The deflection in
elastic region is defined by equation (2.10) and moments by equations (2.11). Here
one has to take j = 0, if r ∈ [y,R].

In the central plastic region the stress profile lies on the yield curve. Principal
moments are defined by equations (2.31), (2.32).
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Figure 2.4: Stress profile (Tresca condition).

For determination of the unknown constants A, B, A20, A30, A40 and y, one can
use the boundary conditions (2.13) and the continuity conditions at r = y

[W (y)] = 0,

[M1(y)] = 0,[
dW (y)

dr

]
= 0,

[M2(y)] = 0.

(2.33)

Making use of the second and forth continuity condition in system (2.33) one can
determine the constants

A20 = −Py
2(ν + 1) + 4M0

16D0(1 + ν)
(2.34)

and

A30 =
Py4(ν + 1)

16D0(ν − 1)
. (2.35)

From the third continuity condition in system (2.33) one can express the constant

A =
Py2(ν + 1)− 4M0

16D0(ν2 − 1)
. (2.36)
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Figure 2.5: Bending moments and deflections (Tresca condition).
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Figure 2.6: Stress profile (diamond condition).

For determining the constant one can use the second boundary condition in equations
(2.13). This results in

A40 =
1

64D0(ν2 − 1)

{
4R2(ν − 1)[Py2(ν + 1) + 4M0]

−4(ν + 1)2y4P lnR− PR4(ν2 − 1)
} (2.37)

Making use of the first continuity condition in system (2.33) one can find the constant

B =
Py4[(ν + 1) ln y − ν]

16D0(ν − 1)
+

1

64D0(ν2 − 1)

{
4R2(ν − 1)

·[Py2(ν + 1) + 4M0]− 4(ν + 1)2y4P lnR+ P (ν2 − 1)(y4 −R4)
}
.

(2.38)

Finally, for expressing the constant y one can substitute (2.34) and (2.35) in the first
boundary condition in equations (2.13). This leads to the equation

P (ν + 1)y4 − 2(ν + 1)PR2y2 − 8M0R
2 + PR4(3 + ν) = 0. (2.39)

It is easy to solve the biquadratic equation (2.39) and get the constant

y =

√√√√R2 ±

√
−2R2(PR2 − 4M0)

P (ν + 1)
. (2.40)
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Figure 2.7: Bending moments and deflections(diamond condition).
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Evidently, only the choise of the sign "minus" in (2.40) leads to a realistic solution.
The results of calculations are presented in Fig. 2.6 and Fig. 2.7 for different

values of the transverse pressure. Comparing the results presented in Fig. 2.5 and
Fig. 2.7 one can see that the plate made of a Tresca material is stronger than the plate
corresponding to the diamond yield condition. One can make the same conclusion
observing the Fig. 2.8. Although the hoop moment distributions are quite different in
these cases the shapes of radial moments are similar. However, the moments are of
different size in these cases.

0

0.4

0.8

1.2

 0  0.02  0.04  0.06  0.08

p
 (

M
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a
)

W (m)

Tresca
Diamond

Figure 2.8: Load-deflection relations of circular plates.

2.7 Elastic plastic bending of an annular plate

Elastic plastic deformations of an annular plate with radii a and R will be studied
(see Fig. 2.9). The plate is subjected to the distributed transverse loading of intensity
P = P (r). Assume that the outer edge is simply supported whereas the inner edge
of the plate is completely free. Therefore, at the outer edge the transverse deflection
W and the radial bending moment M1 must vanish. The radial bending moment is
zero at the inner edge, as well. Thus, the boundary conditions are at the outer edge

W (R) = 0,

M1(R) = 0
(2.41)

and at the inner edge
M1(a) = 0,

Q(a) = 0
(2.42)
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Figure 2.9: Cross-section of the annular plate.

where Q is the shear force. Note that the hoop moment M2 can take arbitrary values
at the both edges. For the sake of simplicity it is assumed that the cross sections of the
plate are of sandwich type. The aim of this section is to determine the distributions
of bending moments M1, M2 and the transverse deflection W for each value of the
transverse load. It is expected that in the range of low loadings the plate is fully
elastic and with the subsequent increase of the load level elastic plastic deformations
occur.

2.7.1 Elastic stage of deformation

In the case of low stress level the plate remains elastic and the Hooke’s law holds
good. The stresses are coupled with external loads by the equilibrium equations
(1.1). In the case N1 = N2 = 0 equations (1.1) can be presented as

d

dr
(rM1)−M2 − rQ = 0 (2.43)

and
d

dr
(rQ) = −P (r)r. (2.44)

In the present case it is assumed that P (r) = const . This admits to integrate the
last equation. The solution of 2.44 satisfying the boundary condition (2.42) can be
presented as

Q = −P (r2 − a2)
2r

. (2.45)

It can be rechecked that the solution of (1.14) satisfying (2.41) is

W =
P (r4 −R4)

64D
+A1(r

2 ln r −R2 lnR) +A2(r
2 −R2) +A3 ln

r

R
, (2.46)
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A1 – A3 being arbitrary constants. However, calculating the shear force Q from
(2.43) making use of (1.11), (1.8), (2.46) and comparing with (2.45) one can see that

A1 = −Pa
2

8D
(2.47)

Substituting (2.46) in (1.11) one can determine the bending moments

M1 = −Pr
2(3 + ν)

16
+
Pa2[2(1 + ν) ln r + 3 + ν]

8

−D
[
2A2(1 + ν) +

A3(ν − 1)

r2

] (2.48)

and

M2 = −Pr
2(1 + 3ν)

16
+
Pa2[2(1 + ν) ln r + 1 + 3ν]

8

−D
[
2A2(1 + ν) +

A3(1− ν)

r2

]
.

(2.49)

Applying the boundary conditions (2.41), (2.42) to (2.48) one can define

A2 =
P

32D(1 + ν)(R2 − a2)
·
{

(3 + ν)(a4 −R4)

+2a2[(R2 − a2)[2(1 + ν) ln a+ 3 + ν]− 2R2(1 + ν)(ln a− lnR)]
}
,

(2.50)

A3 =
Pa2R2[(3 + ν)(R2 − a2) + 4a2(1 + ν)(ln a− lnR)]

16D(ν − 1)(R2 − a2)
. (2.51)

2.7.2 Elastic plastic stage of deformation

The plate remains pure elastic until the stress profile lies entirely inside the Tresca’s
yield hexagon (Fig. 1.3). During the elastic stage the inequalities

|M1| ≤M0, |M2| ≤M0, |M1 −M2| ≤M0 (2.52)

are satisfied as strict inequalities. The elastic plastic stage begins at the load level
P = P1 when the stress profile reaches to the yield locus. The analysis shows that
the stress profile reaches to the side M2 = M0 of the yield hexagon. The maximum
of the hoop moment is achieved at the inner edge of the plate and thus, the quantity
P1 can be calculated from the equation M2(a) = M0. Therefore,

P1 =
8M0(R

2 − a2)
R4(3 + ν) + 4a2R2[(1 + ν)(ln a− lnR)− 1] + a4(1− ν)

. (2.53)

During the elastic plastic stage the plate is divided into two parts. In the inner part
(a, y) plastic deformations take place whereas the region (y,R) remains elastic. Let
us consider the regions separately.
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Plastic region, r ∈ (a, y)

For r ∈ (a, y) the stress profile lies on the side M2 = M0 of the yield hexagon
(Fig. 1.3). SubstitutingM2 = M0 in (2.43) and taking (2.45) into account one obtains
for r ∈ (a, y)

rM1 − rM0 +
P

2

(
r3

3
− a2r

)
= C, (2.54)

C being an arbitrary constant. Due to the boundary condition (2.42)

C = −aM0 −
Pa3

3
. (2.55)

Thus (2.54) can be put into the form

M1 =
r − a
r

[
M0 −

P (r2 + ar − 2a2)

6

]
. (2.56)

It is worthwhile to emphasize that (2.56) holds good for r ∈ (a, y). The deflection
W is expressed by the formula (1.23).

Elastic region, r ∈ (y,R)

In the elastic region of the plate the relations (2.46) – (2.49) hold good. However,
(2.50) and (2.51) are not valid. For determination of unknown constants A2, A3 and
A, B one can use the boundary conditions at r = R, also the continuity requirements

of quantitiesW ,
dW

dr
,M1,M2 at r = y. The requirementsM1(R) = 0 andM2(y) =

M0 give with the help of (2.48), (2.49)

−PR
2(3 + ν)

16
+
Pa2[2(1 + ν) lnR+ 3 + ν]

8

−D
[
2A2(1 + ν) +

A3(ν − 1)

R2

]
= 0

(2.57)

and

−Py
2(1 + 3ν)

16
+
Pa2[2(1 + ν) ln y + 1 + 3ν]

8

−D
[
2A2(1 + ν) +

A3(1− ν)

y2

]
= M0.

(2.58)

The continuity of the radial bending moment at r = y with (2.48) and (2.56) furnishes
the relation

Pa2[2(1 + ν) ln y + 3 + ν]

8
−D

[
2A2(1 + ν) +

A3(ν − 1)

y2

]
−Py

2(3 + ν)

16
− y − a

y

[
M0 −

P (y2 + ay − 2a2)

6

]
= 0.

(2.59)
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Figure 2.10: Stress profile (a = 0.1R).

Due to the continuity of the deflection and its slope one has making use of (2.46)
and (1.23)

A =
Py3

16D
− Pa2y(2 ln y) + 1

8D
+ 2A2y +

A3

y
(2.60)

and

−P (y4 −R4)

64D
− Pa2(y2 ln y −R2 lnR)

8D
+A2(y

2 −R2)

+A3 ln
y

R
−Ay −B = 0.

(2.61)

From (2.59), (2.58) one can easily define

A2 =
1

48D(1 + ν)y
· {−Py3(1 + 3ν) + 6Pa2y[(ν + 1) ln y + ν]

+12M0(a− 2y) + 4Pa3}
(2.62)

and

A3 =
y[Py3(1 + 3ν)− 6Pa2y(1 + ν) + 8a(3M0 + Pa2)]

48D(ν − 1)
. (2.63)
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Figure 2.11: Stress profile (a = 0.3R).
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Figure 2.12: Stress profile (a = 0.6R).
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The equation (2.61) admits to define

B =
P [−3y4 + 8a2y2(ln y + 1)−R2(R2 − 8a2 lnR)]

64D

−(y2 +R2)A2 +
(

ln
y

R
− 1
)
A3.

(2.64)

Substituting A2, A3 from (2.62), (2.63) in (2.57) one obtains the equation

−PR
2(3 + ν)

16D
+
Pa2[2(1 + ν) lnR+ 3 + ν]

8D
+

1

24Dy

·{−Py3(1 + 3ν) + 6Pa2y[(ν + 1) ln y + ν] + 12M0(a− 2y) + 4Pa3}

+
y[Py3(1 + 3ν)− 6Pa2y(1 + ν) + 8a(3M0 + Pa2)]

48DR2
= 0.

(2.65)

The equation (2.65) serves for determination of the quantity y for fixed load intensity
P .

2.7.3 Numerical results

The equation (2.65) is solved numerically making use of the computer code Mathe-
matica. The results of calculations are presented in Table 2.2 and Fig. 2.10 – Fig. 2.15
for the plate with radius R = 1 m, h = 0.01 m and H = 0.05 m. Calculations car-
ried out showed that the plastic region expands with the growth of the load intensity
(Table 2.2). The plate reaches to the fully plastic stage when P = 1071428, 57 Pa.

Table 2.2: Radius of the plastic zone.
P 611197 657220 703243 749266 795289 841312
y 0.3 0.3245 0.3536 0.3884 0.4304 0.4808

P 887335 933358 979381 1025404 1071427
y 0.5409 0.6115 0.6939 0.7941 0.9989

The distributions of bending moments of the plate are depicted in Fig. 2.10 –
Fig. 2.12 for different values of the load intensity. It can be seen from Fig. 2.10 –
Fig. 2.12 that the distributions of bending moments are statically admissible since
at each r ∈ [a,R] corresponding values of M1, M2, are such that the point either
lies on the side of the yield hexagon or is located inside the hexagon. The elastic
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Figure 2.13: Bending moments and deflections (a = 0.1R).
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Figure 2.14: Bending moments and deflections (a = 0.3R).
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Figure 2.15: Bending moments and deflections (a = 0.6R).
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plastic stage of deformation is completed at the loading level where the whole plate
is plastic. This situation corresponds to

P = P2 =
6M0(R− a)

R3 + 2a3 − 3a2R
(2.66)

and y = R.
It is worthwhile to mention that the stress profiles (see Fig. 2.10 – Fig. 2.12, also

Fig. 2.4, Fig. 2.6) do not present the bending moments as functions of the current
radius. However, these figures admit to prove the statical admissibility of the current
solution.

The transverse deflections and the bending moments are depicted in Fig. 2.13 –
Fig. 2.15 for the plate of constant thickness with different inner radii. It can be seen
from Fig. 2.13 – Fig. 2.15 that the distributions of radial moments depend slightly on
the load intensity. However, the hoop moment distribution is completely different in
the elastic and elastic plastic stages of deformation. As it was shown aboveM2 = M0

in the plastic region. If the load intensity P tends to the value P2 then the hoop mo-
ment distribution tends to the value M2 ≡ M0 for r ∈ [a,R]. The load-deflection
relations of plates made of different materials are presented in [97]. The results of
[97] are compared with the current solution in Fig. 2.16. It can be seen from Fig. 2.16
that the curve corresponding to the material obeying the diamond yield condition is
lower of these corresponding to the Mises yield condition and its non-linear approx-
imations. The matter that the curve corresponding to the diamond yield condition
is lower than the others coincides with our expectation because the diamond on the
plane of principal moments can be considered as an inscribed polygon with respect
to the Mises ellipse.
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CHAPTER 3
ELASTIC PLASTIC BENDING OF STEPPED ANNULAR
PLATES

3.1 The model of the plate

Let us consider the axisymmetric bending of an annular plate subjected to the trans-
verse pressure of intensity P . Assume that the internal edge of the plate of radius a
is clamped whereas the external edge of radius R is absolutely free. The plate under
consideration has sandwich type cross section (see Fig. 3.1).

The behaviour of the plate will be prescribed with the first order bending theory
of thin plates corresponding to small deformations and small displacements (see [82,
102]. The stress state is defined by bending moments M1, M2 in the radial and
circumferential direction, respectively. The latters are coupled with principal stresses
σ1, σ2 by (1.9). Due to the symmetry the moment M12 = 0. Note that the membrane
forces will be neglected according to current approach. The third generalized stress
component to be taken into account is the shear force Q but this component does not
contribute to the strain energy when the bending theory is used. Moreover, the shear
force, although appearing in the equilibrium conditions, can be eliminated from the
equilibrium equations and thus does not involve in the set of governing equations.

It is assumed that the stress strain state induced by the axisymmetric transverse
pressure is axisymmetric at each stage of the pressure. Thus the stress and strain
components are defined at each point of the plate by the current radius and the given
pressure level.

Material of the plate is assumed to be an ideal elastic plastic material obeying the
square yield condition in the plastic (inelastic) stage of deformation.

The aim of the chapter is to determine the transverse deflection as well as bending
moments distributions in the elastic and subsequent inelastic stages of deformation
for given transverse pressure levels.

3.2 Basic equations and concepts

It is well known that in the case of lower values of the pressure loading the plate is
pure elastic. The elastic behaviour of the material can be prescribed with Hooke’s
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Figure 3.1: Cross-section of the plate.

law. The latter is to be presented in the generalized form as

M1 = Dj(κ1 + νκ2),

M2 = Dj(κ2 + νκ1)
(3.1)

where j = 0, . . . , n. In the case of a sandwich plate Dj is presented by the formula
(2.9).

During the subsequent quasistatic increasing the external loading constitutive
equations (3.1) hold good until the elastic limit is exhausted at an unknown point
of the plate. In the case of a full plate and of the pressure of constant intensity the
yield limit is reached at first at the center of the plate. After that the plate is subdi-
vided into elastic and plastic regions, respectively. Let these regions be Se and Sp,
respectively. Since we are studying the plate of sandwich type and the carrying layers
are thin no elastic plastic state of deformations occurs.

Assume that the material of the plate obeys the square yield condition and asso-
ciated flow rule (Fig. 3.2). Thus for r ∈ Sp the stress state of the point is such that
the point (M1(r) , M2(r)) lies on a side of the square (Fig. 3.2). It means that

|M1| ≤M0j , |M2| ≤M0j (3.2)

for r ∈ (aj , aj+1), j = 0, . . . , n. Quantity M0j stands for the yield moment corre-
sponding to the thickness hj . It can be easily stated that M0j is presented in form
(2.5).
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Evidently, at the boundary of the plate requirements

M1(R) = 0,

Q(R) = 0
(3.3)

and
W (a) = 0 (3.4)

must be satisfied at each loading level.
Let us consider the governing equations separately in elastic and plastic regions,

respectively. In elastic regions the stress strain state is determined according to (1.1)
and (3.1). The substitution of (3.1) and (1.8) in (1.1) easily leads to the equation
(2.8).

In the following it is reasonable to use non-dimensional quantities

ρ =
r

R
, m1 =

M1

M∗
, m2 =

M2

M∗
, q =

RQ

M∗
,

α =
a

R
, αj =

aj
R
, p =

PR2

M∗
, w =

W

H
,

γj =
hj
h∗
, dj =

EH2hj
2(1− ν2)σ0R2h∗

(3.5)

where M∗ = σ0h∗H is the yield moment of a reference plate of constant thickness
h∗.
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Making use of variables (3.5) one can present the equilibrium equations (1.1) as

((ρm1)
′ −m2)

′ + pρ = 0 (3.6)

where prims denote the differentiation with respect to the non-dimensional radius ρ.

3.3 General solutions in elastic and plastic regions

Let us denote an elastic region (aj , aj+1), j = 0, . . . , n where the thickness of carry-
ing layers is hj by Sej .

Making use of (2.8) and (3.5) it is easy to recheck that the general solution of
(2.8) can be presented as

w = A1jρ
2 ln ρ+A2jρ

2 +A3j ln ρ+A4j +
pρ4

64dj
(3.7)

where ρ ∈ Sej and dj =
DjH

M∗R2
. Arbritrary constants A1j – A4j will be deter-

mined from the boundary requirements and continuity conditions for w, w′, m1 at
the boundaries between elastic and plastic regions.

Non-dimensional bending moments can be determined according to (3.1) and
(3.5) as

m1 = −dj
(
w′′ +

ν

ρ
w′
)
,

m2 = −dj
(
w′

ρ
+ νw′′

) (3.8)

for ρ ∈ Sej . The terms with derivatives w′, w′′ in (3.8) can be expressed as

w′ = A1j(2ρ ln ρ+ ρ) + 2A2jρ+
A3j

ρ
+

pρ3

16dj
(3.9)

and

w′′ = A1j(2 ln ρ+ 3) + 2A2j −
A3j

ρ2
+

3pρ2

16dj
(3.10)

for ρ ∈ Sej .
The third stress component besides bending moments is the shear force. It is

reasonable to calculate it from the equilibrium equations (1.1) or (3.6). From (3.6),
(1.1) one easily obtains the equation

(ρq)′ = −pρ (3.11)
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which holds good over the entire plate. The solution of this equation which satisfies
the boundary condition q(1) = 0 is

q = −p
2

(
ρ− 1

ρ

)
(3.12)

for ρ ∈ (α, 1).
The solution of basic equations in a plastic region Sp depends on the particular

yield regime. It appears that in the present case the stress strain state in a plastic
region of the plate corresponds to the sides AD or DC of the square yield condition
(Fig. 3.2). Let us consider these yield regimes in a greater detail.

In the case of the yield profile CD one has m1 = −γj for ρ ∈ Spj ⊂ (aj , aj+1).
However, it can be rechecked (see [11, 86]) that this regime can not take place at a
region of finite length.

If the stress profile lies on the side AB of the yield square (Fig. 3.2) then m2 =
−γj and after integration of (3.6) with (3.12) one has

m1 = −γj −
p

2

(
ρ2

3
− 1

)
+
Ej
ρ

(3.13)

for ρ ∈ Spj .
In the case of the yield regime AD one has κ1 = 0 and thus

w = Ajρ+Bj (3.14)

for ρ ∈ Spj , where Aj , Bj are arbritrary constants. However, on the side CD of the
yield condition (Fig. 3.2) κ2 = 0 and thus w = const. This is one of but not the only
reason why the regime CD does not take place in a region of finite length.

3.4 The pure elastic stage of deformation (stage I)

As the intensity of the pressure loading is increased from zero, the entire plate is
elastic until the stress profile reaches a side of the yield condition. However, during
the elastic stage the stress profile lies inside the square ABCD (Fig. 3.2) where
γ = min γj .

During this stage of loading the deflection is defined by (3.7), bending moments
and the shear force by (3.8) and (3.12), respectively. For determination of unknown
constants one can use the boundary conditions w′(a) = w(a) = 0, m1(1) = 0 and
the continuity requirements

[w(αj)] = 0,

[w′(αj)] = 0,

[m1(αj)] = 0

(3.15)
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for j = 1, . . ., n.
It appears that the general solution in the form (3.7) may involve inadequate so-

lutions for particular cases. In order to avoid this one has to check if the shear force
in the form (3.12) concides with that following from the first equation of the system
(1.1).

Let us denote
ρq̄ = (ρm1)

′ −m2. (3.16)

Evidently, q̄ = q. Thus one has to check if the constraints

q̄(ρ) = q(ρ) (3.17)

for ρ ∈ Sej (j = 1, . . ., n) with the boundary condition q̄(1) = 0 are satisfied.
Making use of (3.7) - (3.10) and (3.12) with (3.16) it is easy to show that equalities
(3.17) take place if

A1j = − p

8dj
(3.18)

for j = 0, . . ., n.
Thus, for determination of 3n + 3 unknown constants A2j , A3j , A4j (j =

0, . . . , n) one has three boundary conditions and 3n continuity conditions (3.15).
Making use of (3.8), (3.9), (3.10) and taking (3.18) into account it is easy to

determine the bending moments

m1 =
−pρ2(3 + ν)

16
− p

8
[2(1 + ν) ln ρ+ 3 + ν]

−2(1 + ν)A2jdj +
A3jdj(1− ν)

ρ2

(3.19)

and

m2 =
−pρ2(1 + 3ν)

16
− p

8
[2(1 + ν) ln ρ+ 1 + 3ν]

−2(1 + ν)A2jdj +
A3jdj(1− ν)

ρ2

(3.20)

for ρ ∈ (aj , aj+1), j = 0, . . ., n.
It is interesting to remark that the distribution of the shear force does not depend

on the distribution of thicknesses, as it can be seen from (3.12). At the same time
other stress components (bending moments) do depend on the thicknesses.

The elastic loading stage completes at the moment when the stress profile reaches
the sideCD of the yield square. In the case of a plate of constant thickness the plastic
yielding happens at first at the internal edge of the plate for ρ = α. At the limit stage
between the fully elastic stage and inelastic stage for p = p0

m1(α) = −γ0. (3.21)
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Note that, in principle, the plastic yielding may start elsewhere, as well. If, for
instance, the inner annulus is very narrow and the thickness h0 is large whereas the
next annulus has very small thickness then the yield can start from the next annulus.
However, these cases will not studied in the present work.

3.5 Elastic plastic stage with the hinge circle (stage II)

Assume that during this stage of deformation the plastic hinge circle is located at
the internal edge of the plate for ρ = α. However, due to the hinge the boundary
condition w′(α) = 0 is no more valid. For determination of unknown constants A2j ,
A3j , A4j one can use relations (3.15) – (3.17) with boundary conditions w(α) = 0,
m1(1) = 0 and (3.21). Note that (3.18) remains valid, as well. The latter admits to
present the deflection for ρ ∈ [αj , αj+1] as

w =
pρ2(ρ2 − 8 ln ρ)

64dj
+A2jρ

2 +A3j ln ρ+A4j . (3.22)

Making use of (3.22), (3.19) and satisfying boundary conditions w(α) = 0,
m1(α) = −γ0 results in

A20α
2 +A30 lnα = −A40 −

pα2(α2 − 8 lnα)

64d0
,

−2A20(1 + ν)d0 +
d0(1− ν)A30

α2

= −γ0 +
pα2(3 + ν)

16
+
p[2(1 + ν) lnα+ 3 + ν]

8

(3.23)

Finally, employing the continuity conditions (3.15) with boundary conditions
(3.23) and m1(1) = 0 admits to determine unknown constants A2j , A3j , A4j for
each j = 0, . . ., n.

This stage of deformation will be completed when the stress profile at ρ = α
reaches the point D (Fig. 3.2) so that m2(α) = −γ0. Let the corresponding value of
the external load intensity be p1.

3.6 The elastic plastic stage with a plastic region of finite length (stage
III)

It is reasonable to assume that during the subsequent increasing of the tansverse pres-
sure plastic deformations take place for ρ ∈ Sp0, ρ ∈ [α, η] where η is a previously
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unknown constant. The plastic region corresponds to the yield regime DA (Fig. 3.2).
Thus, for ρ ∈ (α, η)

m2 = −γ0. (3.24)

The distribution of the radial bending moment m1 can be calculated by (3.13)
taking j = 0. As at ρ = β, m1 = −γ0 the arbitrary constant E0 is to be

E0 =
αp

2

(
α2

3
− 1

)
. (3.25)

Thus the bending moment is defined as

m1 = −γ0 −
p

2

(
ρ2

3
− 1

)
+
αp

2ρ

(
α2

3
− 1

)
(3.26)

for ρ ∈ [α, η].
The tranverse deflection has the form (3.14) in the plastic region Sp0. According

to the boundary condition w(α) = 0 must be B0 = −A0α. Thus

w = A0(ρ− α) (3.27)

for ρ ∈ [α, η].
Since we can now define w(η), w′(η), m1(η) the subsequent solution procedure

is similar to that accomplished in the previous section. Note that for ρ > η the plate
is elastic. For determination of the parameter η one has to use the continuity of the
moment m2 taking m2(η) = −γ0.

3.7 Several plastic regions

The previous stage of loading terminates at the moment when plastic yielding takes
place in the section Sp1 or in another section. Let us assume for the conceteness sake
that the stress profile reaches to the corresponding yield level at ρ = α1 when p = p2.
Thus for p ≥ p2 the plastic deformations take place in the region (α1, η1) as well as
in (α, η) which continues the extension. It means that m2 = −γ0 for ρ ∈ (α1, η1).

The bending moment distribution for ρ ∈ Sp1 can be defined according to (3.13)
with the unknown constant E1. Similarily the deflection w is given by (3.14) with
unknown constants A1, B1.

The procedure of the determination of constants of integration is similar to that
accomplished in the previous case. Now we have to take into account that the region
(η, α1) between plastic regions remain elastic. Here we have unknown constants
A21, A31, A41. The number of unknowns in each region is, thus, three. For deter-
mination of these constants the continuity requirements for m1, w, w′ are applicable.
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Figure 3.3: Stress profile.

Finally, the parameters η, η1 are to be determined from equations m2(η) = −γ0 and
m2(η1) = −γ1 where m2 is calculated for an elastic region according to (3.20) with
previously defined constants A2j , A3j .

3.8 Numerical results

Results of calculations in the case of plates with a single step are presented in Fig. 3.3
– 3.6. The results regard to the plate with inner radius a = 0.2R.

The stress profiles on the plane of moments m1, m2 are shown in Fig. 3.3 for
different values on the load intensity. It can be seen from Fig. 3.3 that the profiles
corresponding to smaller values of the load p lie wholly inside the square |m1| ≤ 1,
|m2| ≤ 1. When the load intensity increases until p = p1 the end of the profile
reaches the side m1 = −1 and for p = p2 the corner point where m1 = m2 = −1.
During subsequent growth of the load intensity the end of the stress profile lies on the
side m2 = −1 as it was expected theoretically.

Distributions of bending moments m1 and m2 are presented in Fig. 3.4 and
Fig. 3.5, respectively. The locations of boundaries between elastic and plastic re-
gions in Fig. 3.4 – 3.6 are shown by asterisks. It can be seen from Fig. 3.5 that when
the load increases the stress state tends to the pure plastic state. In the case of a plate
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Figure 3.4: Radial bending moments m1.
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of constant thickness in the pure plastic state m2 ≡ −1. In the case of a stepped
plate it can be such that m2 = −γj for ρ ∈ (αj , αj+1), j = 0, . . . , n. However, the
question which is the stress state at the plastic collapse can be answered by the limit
analysis of the plate of particular shape.

3.9 Concluding remarks

A method for theoretical investigation of axisymmetric plates subjected to the dis-
tributed transverse pressure was developed. The material of plates was assumed to be
an ideal elastic plastic material obeying the square yield condition and the associated
flow law in the range of inelastic deformations. In order to get maximal simplicity of
the posed problem hardening of the material as well as geometrical non-linearity of
the plate behaviour were neglected.

It was assumed that the plates under consideration had piecewise constant thick-
ness with arbitrary number of steps. Exact solutions were developed for the case
when the plate is clamped at the inner edge whereas the outer edge is absolutely free.
As a result of the solution procedure a succession of stress states which are in equi-
librium with the external loading were constructed that led from the wholly elastic to
the elastic plastic state and finally to the plastic collapse state.
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CHAPTER 4
OPTIMIZATION OF ELASTIC CIRCULAR PLATES WITH
ADDITIONAL SUPPORTS

4.1 Optimality criteria

The plate under consideration is simply supported at the edge and it is resting on an
absolutely rigid ring support of unknown radius r = s. From practical considerations
it is evident that the desirable position of the additional support is such that the max-
imal deflection of the plate is as small as possible. Thus the optimal location of the
internal support should minimize the functional

J1 = max
r∈[0,R)

W (r, P, s) (4.1)

for given loading P = P (r) and thickness h = h(r). However, the cost function pre-
sented in the form (4.1) has several drawbacks. First of all, it is a non-differentiable
and non-additive functional. The use of non-differentiable functionals in the solution
of problems of optimization is quite complicated. On the other hand, the functional
(4.1) ignores the expenditures necessary for manufacturing of the additional support.

It can be shown that an approximation of the functional (4.1) can be presented as
[4, 47]

J2 =

(∫ R

0
W krdr

) 1
k

(4.2)

where k is an integer. If k →∞ then J2 → ‖W‖.
Due to the circumstancies mentioned above in the present chapter the cost func-

tion

J =

∫ R

0
W krdr + 2µ0πs (4.3)

will be employed. In (4.3) µ0 stands for the specific cost (cost per unique length)
of the additional support. We assume herein that the material cost of the additional
support is proportional to its length.

The aim of the chapter is to determine the design of the plate with an additional
support (see Fig. 4.1) which minimizes the cost function (4.3) so that at each value
of P governing equations of the theory of thin axisymmetric plates with appropriate
boundary conditions are satisfied.
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Figure 4.1: Circular plate with additional support.

4.2 Boundary conditions

Taking a look at the equilibrium and constitutive equations (1.1), (1.4), (1.8), (1.11) it
appears that one can eliminate from the set of basic equations variables σ1, ε1, σ2, ε2,
κ1, κ2 and also M2. Introducing another new variable Z one can present the system
of governing equations as

dW

dr
= Z,

dZ

dr
= −M1

D
− νZ

r
,

dM1

dr
=
D(ν2 − 1)Z

r2
− M1(1− ν)

r
+Q,

dQ

dr
= −Q

r
− P (r),

(4.4)

where the flexural stiffness D is presented by formula 1.12.
Variables W , Z, M1, Q will be treated as state variables which satisfy the state

equations (4.4) with appropriate boundary and intermediate conditions. At the outer
edge of the plate , e. g. at r = R bending moment M1 and the deflection W must
vanish. Thus

M1(R) = 0, W (R) = 0. (4.5)

Due to the symmetry at the center of the plate

dW

dr
(0) = 0, Q(0) = 0. (4.6)

At r = s where the rigid ring support is located must be

W (s) = 0. (4.7)
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Note that state variables W , Z, M1 are continuous whereas Q can be discontinu-
ous at r = s.

4.3 Necessary optimality conditions

In order to establish the requirements to be satisfied by the optimal solution let us
introduce the augmented functional (see Bryson [10], Hull [30]; Lellep, Polikarpus
[49])

J∗ = µs+

∫ s

0
F∗dr +

∫ R

s
F∗dr (4.8)

where according to (4.3), (4.4)

F∗ = W k + ψ1

(
dW

dr
− Z

)
+ ψ2

(
dZ

dr
+
M1

D
+
νZ

r

)
+ψ3

(
dM1

dr
− D(ν2 − 1)Z

r2
+
M1(1− ν)

r
−Q

)
+ψ4

(
dQ

dr
+
Q

r
+ P (r)

) (4.9)

and µ = 2πµ0, the quantities ψ1 – ψ4 being adjoint variables.
Evidently the problem posed above belongs to the class of optimal control prob-

lems with moving boundaries. Therefore, one has to employ total variations when
deriving necessary conditions of minimum of the functional (4.8). The total variation
of a state variable y at r = s+ 0 or at r = s− 0 must be calculated by the following
sample:

∆y(s± 0) = δy(s± 0) +
dy(s± 0)

dr
·∆s (4.10)

where ∆y is the total variation and δy stands for the ordinary variation of the variable
y. If the state variable is continuous at r = s then ∆y(s− 0) = ∆y(s+ 0) = ∆y(s).
However, in the case of discontinuous variables one has to distinguish the quantities
∆y(s − 0) and ∆y(s + 0). Note that even in the case of continuous variables the
quantities δy(s− 0) and δy(s+ 0) must not be equal to each other.

The total variation of a Lagrange’ functional is calculated by the rule (see Bryson
[10], Lellep [46]),

∆

∫ s

0
Fdr = δ

∫ s

0
Fdr + F |s ·∆s (4.11)

where ∆s stands for an arbitrary increment of s. According to (4.11) one can write

∆J∗ = µ∆s+ δ

∫ s

0
F∗dr + δ

∫ R

s
F∗dr + F∗|s−∆s− F∗|s+∆s. (4.12)
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Taking (4.9) into account one can easily determine the following weak variation

δ
∫ b
a F∗dr =

∫ b
a

{
kW k−1rδW − dψ1

dr
δW − ψ1δZ −

dψ2

dr
δZ

+
ψ2

D
δM1 +

νψ2

r
δZ − dψ3

dr
δM1 −

D(ν2 − 1)ψ3

r2
δZ

+
ψ3(1− ν)

r
δM1 − ψ3δQ−

dψ4

dr
δQ+

ψ4

r
δQ

}
dr

+ (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ)
b
a

(4.13)

where a and b are arbitrary boundaries of integration.
Substituting the both integrals in (4.12) by (4.13) with appropriate choise of

boundaries a and b leads to the relation

∆J∗ = µ∆s+
∫ R
0

{
kW k−1rδW − dψ1

dr
δW − ψ1δZ −

dψ2

dr
δZ

+
ψ2

D
δM1 +

νψ2

r
δZ − dψ3

dr
δM1 −

D(ν2 − 1)ψ3

r2
δZ

+
ψ3(1− ν)

r
δM1 − ψ3δQ−

dψ4

dr
δQ+

ψ4

r
δQ

}
dr

+ (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ) |s0

+ (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ) |Rs

(4.14)

where the matter that F∗(s) = 0 has taken into account.
Making use of (4.14) one easily obtains from the equation ∆J∗ = 0 the system

of adjoint equations

dψ1

dr
= rkW k−1,

dψ2

dr
= −ψ1 +

νψ2

r
− D(ν2 − 1)ψ3

r2
,

dψ3

dr
=
ψ2

D
+
ψ3(1− ν)

r
,

dψ4

dr
= −ψ3 +

ψ4

r
.

(4.15)

Note that although the adjoint set (4.15) holds good for each r ∈ [0, R] it must be
integrated separately in regions (0, s) and (s,R), respectively. The reason is that
some of adjoint variables can be discontinuous at r = s.
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Boundary conditions (4.5), (4.6) admit to present the transversality conditions as

ψ1(0) = 0, ψ3(0) = 0 (4.16)

and
ψ2(R) = 0, ψ4(R) = 0. (4.17)

Substituting (4.15) – (4.17) in (4.14) admits to rewrite the equation ∆J∗ = 0 as

µ∆s− (ψ1δW + ψ2δZ + ψ3δM1 + ψ4δQ)|s+0
s−0 = 0. (4.18)

From the physical considerations it is evident that W , Z and M1 are continuous
at r = s. Thus following (4.10) one can write

δW (s± 0) = ∆W (s)− dW

dr
(s) ·∆s,

δZ(s± 0) = ∆Z(s)− dZ

dr
(s) ·∆s,

δM1(s± 0) = ∆M1(s)−
dM1(s± 0)

dr
·∆s,

δQ(s± 0) = ∆Q(s± 0)− dQ(s± 0)

dr
·∆s.

(4.19)

Substituting the weak variations of state variables from (4.19) to (4.18) and taking
into account that ∆W (s) = 0 and ∆Z(s), ∆M1(s), ∆Q(s±0) are independent leads
to the requirements

ψ2(s− 0)− ψ2(s+ 0) = 0,

ψ3(s− 0)− ψ3(s+ 0) = 0
(4.20)

and
ψ4(s− 0) = ψ4(s+ 0) = 0. (4.21)

It was assumed above that Z and M1 are continuous everywhere; thus in particu-
lar at r = s. Bearing in mind the continuity of M1 it infers from (1.8) and (1.11) that

κ1 = −dZ
dr

is also continuous at r = s.
Substituting (4.19) – (4.21) in (4.18) and taking into account the continuity of Z,

κ1, κ2 and ψ2, ψ3, also the arbitrariness of the increment ∆s one can present (4.18)
as

µ+ [ψ1(s)]
dW (s)

dr
+ ψ3(s)

[
dM1(s)

dr

]
= 0. (4.22)

In (4.22) the quadratic brackets denote the finite jumps of corresponding variables at
r = s, e. g.

[y(s)] = y(s+ 0)− y(s− 0)
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where y(s±0) stands for right and left hand limits of the discontinuous variable y(r)
at r = s.

4.4 Solution of governing equations

Consider the solution of state equations (4.4) in greater detail in the case when the
plate thickness h is constant. In this case it follows from (1.12) that D = const, as
well.

Integrating the last equation in the system (4.4) one obtains

Q = −1

r

(∫
P (r)dr + C±

)
(4.23)

where C+ and C− stand for constants of integration in the regions [0, s] and [s,R],
respectively. According to formula (1.15) the general solution can be presented as

W =
Pr4

64D
+A1jr

2 ln r +A2jr
2 +A3j ln r +A4j (4.24)

for r ∈ [rj , rj+1] and j = 0, 1. Here the following notation is used: r0 = 0, r1 = s
and r2 = R. Evidently,

Z =
Pr3

16D
+A1jr(2 ln r + 1) + 2A2jr +

A3j

r
(4.25)

and

M1 = −Pr
2(3 + ν)

16
−A1jD[3 + ν + 2(1 + ν) ln r]

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j ,

M2 = −Pr
2(1 + 3ν)

16
−A1jD[1 + 3ν + 2(1 + ν) ln r]

−2DA2j(1 + ν)− D(ν − 1)

r2
A3j .

(4.26)

The integration constantsA1j –A4j will be determined from the boundary and conti-
nuity conditions. Let us consider first the solution in the internal region for r ∈ [0, s].
Here j = 0 in (4.24) – (4.26). Since at the center of the plate the quantities W (0),
M1(0), M2(0) must be finite whereas according to (4.6) Z(0) = 0 one has

A10 = 0, A30 = 0. (4.27)
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Boundary conditions (4.5) with (4.7) and the continuity requirements for Z and M1

result in

A20s
2 +A40 +

Ps4

64D
= 0,

A11s
2 ln s+A21s

2 +A31 ln s+A41 +
Ps4

64D
= 0,

−2sA20 +A11s(1 + 2 ln s) + 2A21s−
A31

s
= 0,

−2A20 +A11(3 + 2 ln s) + 2A21 −
A31

s2
= 0,

A11R
2 lnR+A21R

2 +A31 lnR+A41 +
PR4

64D
= 0,

A11[2(1 + ν) lnR+ 3 + ν] + 2(1 + ν)A21

−A31(1− ν)

R2
+
PR2(3 + ν)

16D
= 0.

(4.28)

The system (4.28) can be easily solved with respect to unknownsA20,A40,A11,A21,
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A31, A41 and presented as

A20 =
p

K
·
[
R6[2(ν + 5)(ln s− lnR) + 3ν + 13]

+s2R4[4(ν + 3)(ln s− lnR)− 3ν − 13]

+s4R2[2(ν + 1)(ln s− lnR) + ν − 1] + s6(1− ν)
]
,

A40 =
−ps2R2

K
·
[
R4[2(ν + 5)(ln s− lnR) + 3ν + 13]

+4s2R2[(ν + 3)(ln s− lnR)− ν − 4]

+s4[−2(ν + 1)(ln s− lnR) + ν + 3]
]
,

A11 =
2pR2

K
·
[
(ν + 5)R4 − 2(ν + 3)s2R2 + (ν + 1)s4

]
,

A21 =
−p
K

[
R6[2(ν + 5) lnR− ν − 3]

+s2R4[4(ν + 3)(lnR− 2 ln s)− ν + 1]

+s4R2[2(ν + 1) lnR+ ν + 3] + s6(ν − 1)
]
,

A31 = s2 ·A11,

A41 =
−ps2R2

K

[
R4[2(ν + 5)(2 ln s− lnR) + ν + 3]

−4s2R2[(ν + 3) lnR+ 1] + +s4[2(ν + 1) lnR− ν + 1]
]
,

(4.29)

where K = 64D
[
(ν − 1)s4 − (ν + 3)R4 + 4s2R2[(ν + 1)(lnR− ln s) + 1]

]
.

4.5 Solution of the adjoint system

The adjoint system (4.15) can be integrated after the substitution of (4.24) in (4.15).
For the sake of simplicity let us consider the case when k = 1 in greater detail.

It is easy to recheck that the general solution of (4.15) corresponding to the case
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k = 1 can be presented as

ψ1 =
r2

2
+ C1j ,

ψ2 = C2jr +
C3j

r
− (3 + ν)r3

16
− C1j(1 + ν)r ln r

2
,

ψ3 =
C2jr

2

D(ν + 1)
+

C3j

D(ν − 1)
− r4

16D

− C1jr
2

D(ν2 − 1)
+
C1jr

2[(1− ν) ln r + 1]

2D(ν − 1)
,

ψ4 = − C2jr
3

2D(ν + 1)
− C3jr ln r

D(ν − 1)
+ C4jr

+
r5

64D
+
C1jr

3 ln r

4D
+
C1j(3− 2ν − ν2)r3

8D(ν2 − 1)

(4.30)

for r ∈ [rj , rj+1] where j = 0, 1.
For determination of 8 unknown constants C1j , C2j , C3j , C4j where j = 0, 1 one

has 8 boundary and intermediate conditions presented by (4.16), (4.17), (4.20) and
(4.21).

It immediately follows from boundary conditions (4.16) that

C10 = 0, C30 = 0. (4.31)

The boundary and intermediate conditions (4.17), (4.20), (4.21) lead to the linear
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algebraic system

C21R+
C31

R
− C11(1− ν)R lnR

2
− (3− ν)R3

16
= 0,

−C21R
3(ν − 1)

2
− C31(ν + 1)R lnR+ C41(ν

2 − 1)RD

+
R5(ν2 − 1)

64
+
C11(ν

2 − 1)R3 lnR

4
+
C11(3− 2ν − ν2)R3

8
= 0,

−C21s
3(ν − 1)

2
− C31(ν + 1)s ln s+ C41(ν

2 − 1)sD

+
s5(ν2 − 1)

64
+
C11(ν

2 − 1)s3 ln s

4
+
C11(3− 2ν − ν2)s3

8
= 0,

−C20s
3(ν − 1)

2
+ C40s(ν

2 − 1)D +
s5(ν2 − 1)

64
= 0,

(C21 − C20)s+
C31

s
− C11(1 + ν)s ln s

2
= 0,

(C21 − C20)(ν − 1)s2 + C31(ν + 1)− C11s
2

+
C11s

2(ν + 1)[(1− ν) ln s+ 1]

2
= 0.

(4.32)

From (4.32) one can easily determine the unknown constants C20, C40, C11, C21,
C31, C41 and present as

C20 = C21 +
C31

s2
− C11(1 + ν) ln s

2
,

C40 =
C20s

2

2D(ν + 1)
− s4

64D
,

C11 =
R2(R2 − s2)[2R2(3 + ν)− (ν + 1)(R2 + s2)]

8L
,

C21 =
C11s

2(ν − 1)

4R2
+

(3 + ν)R2

16
+
C11(1 + ν) lnR

2
,

C31 =
−C11s

2(ν − 1)

4
,

C41 =
C21s

2

2D(ν + 1)
+

C31 ln s

D(ν − 1)
− s4 + 16C11s

2 ln s

64D

−C11(−ν2 − 2ν + 3)s2

8D(ν2 − 1)
,

(4.33)
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where

L = s2(ν − 1)(s2 −R2) + 2R2(ν + 1)(s2 −R2) lnR− 2R2s2(ν + 1)

(ln s− lnR) + 2R2(ν + 1)(R2 lnR− s2 ln s)−R2(ν + 3)(R2 − s2).

4.6 Discussion of results

Results of calculations are presented in Fig. 4.2 – 4.4. The calculations are imple-
mented for k = 1 and µ = 0.

In Fig. 4.2 the distributions of deflections of the plate are presented for various
values of the transverse load intensity. The first and the third graph in Fig. 4.2 and
correspond to the positions of the support at s = 0.2R and s = 0.7R, respectively
whereas the second one is associated with the optimal location of the intermediate
support. The optimal solution corresponds to s = 0.526R. It can be seen from
Fig. 4.2 that in the case of s = 0.2R deflections at the central part of the plate for
r < 0.2R are directed upward despite the pressure is directed downward. Similarily
in the case when s = 0.7R one can see negative deflections in the outward region
for r > 0.7R. However, in the case of optimal position of the additional support the
deflections are non-negative everywhere. It is somewhat surprising that the maximal
deflections in the central and outward regions of the plate, respectively, are quite
different in the optimal case. However, one has to take into account that the cost
function (4.3) with µ0 = 0, k = 1 corresponds to the volume of the axisymmetric
body.

In Fig. 4.3 bending moment M1 is presented for the cases when s = 0.2R, s =
0.526R (optimal case) and s = 0.7R. It can be seen from Fig. 4.3 that the slope of the
radial bending moment has finite jumps at the support position, as might be expected.
It is some what surprising that the radial bending moment vanishes at an internal point
for any values of the transverse pressure loading. It reveals from Fig. 4.3 that in the
case of smaller values of the radius of the internal support the radial bending moment
remains negative in the central part of the plate. It is negative in the vicinity of the
support in the optimal case, as well.

Distributions of the circumferential bending momentM2 are presented in Fig. 4.4
for different values of the pressure loading. It reveals from Fig. 4.4 that the bending
moment M2 is unexpectedly continuous at r = s.

The efficiency of the design established can be assessed by the ratios

e1,2 =
J0
J1,2
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Figure 4.2: Deflections.
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Figure 4.3: Radial bending moments.
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Figure 4.4: Circumferential moments.
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Table 4.1: Efficiency of the design.
s/R 0.2 0.4 0.526 0.6 0.8

10−4J0/R
6 1.996 1.055 1.027 1.031 1.849

102e1 1.562 0.826 0.803 0.807 1.447

102e2 43.80 23.15 22.54 22.62 40.58

where J0 stands for the value of the cost function (4.3) corresponding to the optimal
position of the internal support. However,

J1 =

∫ R

0
Wrdr

in the case of the plate without additional supports and J2 stands for the value of J
in the case when internal support is located at the center of the plate. Calculations
carried out showed that the value of the cost function is very sensitive with respect
to the location of the internal support (Table 4.1). It can be seen from Table 4.1 that
in the case of the optimal location of the internal support the value of J is more than
four times less than that corresponding to the plate with a support at its center.

4.7 Concluding remarks

Variational methods of the theory of optimal control are used for solving the problem
of optimal location of an additional rigid ring support in the case of a circular plate.
The plate is made of an elastic material and subjected to a distributed transverse
pressure. Necessary optimality conditions have derived under the assumption that
the cost of the additional support is proportional to its length. Numerical results have
presented for the plate simply supported at the edge and subjected to the uniformly
distributed transverse pressure.

The results of calculations showed that the optimal position of the additional
support admits to diminish essentially the cost function. It revealed by calculations
that the both, radial and circumferential bending moments are continuous over the
entire plate.
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CHAPTER 5
ANISOTROPIC PLATE

5.1 The optimization problem

Let us consider a circular plate of radiusRmade of a undirectionally reinforced com-
posite material. It is assumed that the fibers are embedded in the matrix material more
or less uniformly with enough high density so that the material can be modelled as a
quasi homogeneous anisotropic material. In the present chapter two cases of undirec-
tional reinforcement will be considered. These are the radial and the circumferential
reinforcements, respectively.

The plate under cosideration is simply supported at the edge and it is subjected to
the axisymmetric tranverse pressure loading of intensity P (r) where r stands for the
current radius. Under these assumptions it is reasonable to presume that the stress
strain state of the plate remains axisymmetric during the deformation.

The thickness h of the plate is assumed to be piecewise constant, e.g. h = hj
for r ∈ (aj , aj+1) where j = 0, . . . , n. Note that in the case of a sandwich plate the
quantity h is interpreted as the thickness of carrying layers.

The parameters hj , aj are treated as preliminarily unknown parameters to be
determined so that maximal deflection W0 = W (0) attains the minimal value under
given weight or material volume of the plate. The latter can be presented as

V = π

n∑
j=0

hj(a
2
j+1 − a2j ). (5.1)

It is stipulated in (5.1) that a0 = 0, an+1 = R.

5.2 Equations of equilibrium and strain components

In the present chapter the governing equations (1.1) of the classical bending theory
of thin plates will be used.

The generalized stresses are coupled with the principal stresses as

N1,2 =

∫ h
2

−h
2

σ1,2dz

M1,2 =

∫ h
2

−h
2

σ1,2zdz

(5.2)
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where σ1, σ2 stand for the normal stresses in the radial and circumferential direction,
respectively. Here h and z are the thickness and the coordinate in the transversal
direction, respectively.

The principle of virtual work states that

δEi = δAe. (5.3)

Here δEi stands for the variation of the internal energy induced by virtual displace-
ments and δAe is the variation of the work done by external forces. In the case of
axisymmetric plates (see Jones [32], Ventsel and Krauthammer [101])

δEi =

∫ R

a
(M1δκ1 +M2δκ2)rdr (5.4)

whereas

δAe =

∫ R

a
P (r)δWrdr. (5.5)

In (5.5) κ1 and κ2 stand for the principal curvatures defined by (1.8).
Note that the principle of virtual work in the form (5.3) – (5.5) holds good in the

case of axisymmetric deformations under the condition that shear deformations as
well as the in-plane displacements can be disregarded. The in-plane displacements
are taken into account in the non-linear plate theories.

5.3 Constitutive equations

It is known that in a unidirectional fiber-reinforced layer of material two perpendic-
ular planes of symmetry exist at each point. The intersections of these planes with
the middle plane of the lamina define two directions denoted by subscripts 1 and 2,
respectively. These directions called principal axis of orthotropy correspond to the
direction of fibers and a direction transverse to the fibers.

In an orthotropic layer the assumptions of the plane stress hold good and thus the
Hooke’s law reads (see Daniel and Ishai [16], Jones [33])

σ1
σ2
τ12

 = [Q] ·


ε1
ε2
γ12

 (5.6)

where σ1, σ2, τ12 are the stress components and ε1, ε2, γ12 corresponding strain
components. The matrix [Q] is defined as

[Q] =

 Q11 Q12 0
Q12 Q22 0

0 0 Q66

. (5.7)
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The elements Qij in (5.7) are so-called reduced stiffnesses related to the material
constants. Let us denote by E1, E2 Young’s moduli in two principal directions and
by ν12, ν21 corresponding Poisson’s ratios.

For any combination of fibers and the matrix (see Jones [33])

ν12
E1

=
ν21
E2

(5.8)

and the reduced stiffnesses are

Q11 =
E1

1− ν12ν21
,

Q22 =
E2

1− ν12ν21
,

Q12 =
ν21E1

1− ν12ν21
,

Q66 = G12.

(5.9)

It can be seen from (5.8), (5.9) that the constitutive relations (5.6), (5.7) can be pre-
sented via four independent material constants.

In the following the main attention will be focused at the determination of bend-
ing moments assuming that the contribution of membrane forces and in-plane dis-
placements to the stress strain state is relatively small in the range of small displace-
ments. Thus, assuming that the fibers are embedded in the matrix material in the
radial or circumferential direction only and that

ε1 = zκ1,

ε2 = zκ2

(5.10)

it follows from (5.6)
σ1 = z(Q11κ1 +Q12κ2),

σ2 = z(Q12κ1 +Q22κ2).
(5.11)

Substituting (5.11) in (5.2) and taking (5.8), (5.9) into account one obtains

M1 = DE1(κ1 + ν21κ2),

M2 = DE2(ν12κ1 + κ2)
(5.12)

where

D =
h3

12(1− ν12ν21)
. (5.13)
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For regions of constant thickness (aj , aj+1) where h = hj = const it is reason-
able to denote

Dj =
h3j

12(1− ν12ν21)
. (5.14)

Equations (5.12) with (5.13) present the constitutive equations for anisotropic (in
the present case for orthotropic) layers and plates. Substituting the curvatures κ1, κ2

by the help of (1.8) in (5.12) one obtains

M1 = −E1Dj

(
d2W

dr2
+
ν21
r

dW

dr

)
,

M2 = −E2Dj

(
ν12d

2W

dr2
+

1

r

dW

dr

) (5.15)

for r ∈ (aj , aj+1), where j = 0, . . . , n.

5.4 Solution of governing equations

Let us consider the case when the intensity of the transverse loading P (r) = P =
const in a greater detail. In this case the third equation in the system (1.1) can be
easily integrated. In fact, the differentiation of the second equation in (1.1) and the
substitution of the shear force results in

d

dr

[
d

dr
(rM1)−M2

]
= −Pr. (5.16)

The integration of (5.16) gives

d

dr
(rM1)−M2 = −Pr

2

2
−B0j (5.17)

for r ∈ (aj , aj+1), j = 0, . . . , n. Here B0j stands for an arbitrary constant.
Substituting the bending moments from (5.15) in (5.17) and accounting for the

relation (5.8) results in

rd3W

dr3
+
d2W

dr2
− E2

E1
· 1

r

dW

dr
=

Pr2

2E1Dj
+

B0j

E1Dj
(5.18)

for r ∈ (aj , aj+1). The shear force Q must be continuous at each r ∈ [a,R]. Thus
Q(aj − 0) = Q(aj + 0). Therefore, one can write

B0j = B0 (5.19)
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for each j = 0, . . . , n. Indeed, it immediately follows from (1.1), (5.17) that

Q(r) =
1

r

(
−Pr

2

2
−B0j

)
(5.20)

for r ∈ (aj , aj+1), j = 0, . . . n. Thus at r = aj ± 0 one has

−Paj
2
− B0j−1

aj
= −Paj

2
− B0j

aj
. (5.21)

From (5.21) one can see that B0j−1 = B0j for each j = 1, . . . , n and therefore,
(5.19) holds good.

Let us concentrate on the integration of the equation (5.18). It is reasonable to
denote

E2 = k2E1. (5.22)

Multiplying the both sides of (5.18) to r and integrating results in the second order
diffrential equation (here C0j is an arbitrary constant)

r2d2W

dr2
− rdW

dr
+ (1− k2)W =

Pr4

8E1Dj
+

B0r
2

2E1Dj
+ C0j(1− k2) (5.23)

for r ∈ (aj , aj+1). This is a linear non-homogeneous equation. The general solution
of (5.23) consists of the sum of the general solution of corresponding homogeneous
equation

Wh = C1jr
1+k + C2jr

1−k (5.24)

and of a particular solution of (5.23). The latter can be presented as

Wp =
Pr4

8(9− k2)E1Dj
+

B0r
2

2(1− k2)E1Dj
+ C0j . (5.25)

In (5.24), (5.25) C0j , C1j and C2j are arbitrary constants of integration.
Finally, the general solution of (5.23) for (r ∈ aj , aj+1), j = 0, . . . , n can be

presented as

W = C0j + C1jr
1+k + C2jr

1−k +
Pr4

8(9− k2)E1Dj
+

B0r
2

2(1− k2)E1Dj
. (5.26)
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From (5.26) one easily obtains

dW

dr
= C1j(1 + k)rk + C2j(1− k)r−k

+
Pr3

2(9− k2)E1Dj
+

B0r

(1− k2)E1Dj
,

d2W

dr2
= C1jk(1 + k)rk−1 + C2j(1− k)(−k)r−k−1

+
3Pr2

2(9− k2)E1Dj
+

B0

(1− k2)E1Dj
.

(5.27)

Substitution of (5.27) in equations (5.15) results in

M1 = −E1Dj

[
C1j(1 + k)(k + ν21)r

k−1 + C2j(1− k)(ν21 − k)r−k−1

+
Pr2(3 + ν21)

2E1Dj(9− k2)
+

B0(1 + ν21)

E1Dj(1− k2)

]
,

M2 = −E2Dj

[
C1j(1 + k)(kν12 + 1)rk−1

+C2j(1− k)(1− kν12)r−k−1 +
Pr2(1 + 3ν12)

2E1Dj(9− k2)
+

B0(1 + ν12)

E1Dj(1− k2)

]
(5.28)

which hold good for r ∈ (aj , aj+1), j = 0, . . . , n.
The governing equations (1.1) are accompanied with boundary conditions

M1(R) = 0,

W (R) = 0
(5.29)

and
dW (0)

dr
= 0 (5.30)

in the case of a simply supported plate. If membrane forces are taken into account
extra requirements for in-plane quantities are needed.

5.5 Bending of a one-stepped plate

Let us focuse our attention on the plate of piecewise constant thickness

h =

{
h0; r ∈ (0, a)

h1; r ∈ (a,R).
(5.31)
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For determination of the stress strain state of the plate one can use the relations (5.26)
– (5.30) for n = 1 and corresponding continuity requirements for the deflection W
and the bending moment M1.

From physical considerations it is evident that the quantities W ,
dW

dr
, M1 and

M2 must be finite at the center of the plate (for r = 0). This is possible only in the
case where (here k > 0)

C10 = 0,

C20 = 0.
(5.32)

Bearing (5.32) in mind one can simplify the notation equalizing

C00 = W0,

C01 = C,

C11 = C1,

C21 = C2.

(5.33)

The continuity of the radial bending moment at r = a leads to the relation

C1(1 + k)(k + ν21)a
k−1 + C2(1− k)(ν21 − k)a−k−1 = 0. (5.34)

It is easy to deduce from (5.34)

C2 = −C1(1 + k)(k + ν21)a
2k

(1− k)(ν21 − k)
. (5.35)

Employing the continuity condition for
dW

dr
to (5.27), (5.30) one has

C1(1 + k)ak + C2(1− k)a−k +
Pa3

2(9− k2)E1D1
+

B0a

(1− k2)E1D1

=
Pa3

2(9− k2)E1D0
+

B0a

(1− k2)E1D0
.

(5.36)

From (5.36) one can easily determine

B0 = (1− k2)E1D1

[
2k(1 + k)D0a

k−1C1

(k − ν21)(D1 −D0)
− Pa2

2E1D1(9− k2)

]
(5.37)

The first requirement in (5.29) with (5.28), (5.35) and (5.37) admits to define

C1 =
(k − ν21)(γ − 1)PR2[α2(1 + ν21)− 3− ν21]

2(9− k2)(1 + k)E1D1Rk−1N
,

C2 =
(k + ν21)PR

2α2k(γ − 1)[α2(1 + ν21)− 3− ν21]
2(9− k2)E1D1R−k−1N

(5.38)
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where for the conciseness sake the notation

N = (k2 − ν221)(1− α2k)(γ − 1) + 2k(1 + ν21)α
k−1 (5.39)

and
γ =

D1

D0
,

α =
a

R

(5.40)

is introduced.
According to the second boundary condition in (5.29) and (5.26) one has

C + C1R
k+1 + C2R

1−k +
PR4

8(9− k2)E1D1
+

B0R
2

2(1− k2)E1D1
= 0. (5.41)

The last equation with (5.35), (5.37), (5.40) admits to define

C = Rk+1C1

[
(1 + k)(k + ν21)α

2k

(1− k)(ν21 − k)
− k(1 + k)

(k − ν21)(γ − 1)
− 1

]
+
PR4(2α2 − 1)

8(9− k2)E1D1
.

(5.42)

Employing the continuity of the deflection W at r = a one obtains

W0 +
Pa4

8(9− k2)E1D0
+

B0a
2

2(1− k2)E1D0

=
Pa4

8(9− k2)E1D1
+

B0a
2

2(1− k2)E1D1
+ C1a

1+k + C2a
1−k.

(5.43)

Thus the maximal deflection can be calculated as

W0 =
1− γ
E1D1

[
Pa4

8(9− k2)
+

B0a
2

2(1− k2)

]
+ C1a

k+1 + C2a
1−k (5.44)

where the constants B0, C1, C2, γ and α are defined by (5.37), (5.38), (5.40).

5.6 Optimal design of a stepped plate

The problem posed above consists in the minimization of the maximal deflection
W0 = W (0) under the condition that the material volume of the plate is constrained.

Evidently, the deflection W (0) is a function of design parameters; W0 =
W0(a1, . . . , an, h0, . . . , hn). The constrained minimum of W0 can be defined em-
ploying the extended function

I∗ = W0(a1, . . . , an, h0, . . . , hn) + λ(V − V0) (5.45)
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where λ is an unknown Lagrangian multiplier.
The necessary optimality conditions of (5.45) can be written as

∂I∗
∂ai

= 0; i = 1, . . . , n

∂I∗
∂hj

= 0; j = 0, . . . , n

∂I∗
∂λ

= 0.

(5.46)

The system (5.46) consists of 2n + 2 algebraic equations. These admit to determine
2n+2 unknown parameters ai (i = 1, . . . , n), hj (j = 0, . . . , n) and λ for each given
volume of the plate V0.

5.7 Numerical results and discussion

The non-linear system of equations (5.46) is solved numerically. Calculations are
carried out with the aid of computer codes Python and Mathematica. Calculations
are carried out for the plate with radius R = 1 m and h0 = 0.0025 m.

Table 5.1: Optimal values of parameters.
V0 Wo α γ W∗ e

0.45 0.0056 0.5701 0.1852 0.0262 0.2122
0.50 0.0044 0.5475 0.2860 0.0191 0.2306
0.55 0.0039 0.5466 0.3583 0.0143 0.2685
0.60 0.0035 0.5539 0.4230 0.0111 0.3146
0.65 0.0032 0.5670 0.4842 0.0087 0.3678
0.70 0.0030 0.5852 0.5437 0.0070 0.4278
0.75 0.0028 0.6088 0.6028 0.0057 0.4952
0.80 0.0027 0.6384 0.6624 0.0047 0.5709
0.85 0.0026 0.6755 0.7241 0.0039 0.6561
0.90 0.0025 0.7232 0.7904 0.0033 0.7530
0.95 0.0024 0.7887 0.8677 0.0028 0.8651
0.99 0.0024 0.8659 0.9600 0.0025 0.9705

The results of calculations are presented in the Table 5.1 and Fig. 5.1 for the case
n = 1. The results are obtained for the plate made of a Boron-Aluminium composite
consisting of Aluminium matrix and Boron fibers. For this material E1 = 204 GPa,
E2 = 118 GPa and ν12 = 0.27.
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Figure 5.1: Bending moments and deflections.
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It can be seen from the middle panel in Fig. 5.1 that the circumferential bending
moment is discontinuous at r = a, as might be expected. Calculations carried out
showed that the jump of M2 at r = a depends on the ratio of thicknesses in the
adjacent sections of the plate.

The radial bending moment M1 has slope discontinuity at the step position (the
top panel in Fig. 5.1) which is less remarkable in the cases of lower load intensities.

The displacements in the transverse direction are presented for different values of
the intensity of the transverse pressure on the bottom panel in Fig. 5.1, for different
load levels for the stepped plate with the step at a = 0.3R.

The efficiency of the design established above is assessed by the ratio

e =
W0

W∗
, (5.47)

W∗ being the deflection of the plate of constant thickness h∗ = V0h0. The values
of the coefficient e are accommodated in Table 5.1 together with optimal values α
and γ. In the first column of Table 5.1 the values of the plate volume V0 = V

π
are presented. It reveals from Table 5.1 that for smaller values of V0 the deflection
of the reference plate of constant thickness W∗ is larger, as might be expected. If
V0 increases then the optimal ratio of thicknesses γ = h1

h0
also increases and the

step location a = αR moves towards the edge of the plate. However, the maximal
deflection of the optimized plate decreases if the quantity V0 increases.

Calculations carried out showed that the optimal values of α and γ are insensitive
with respect to the changes of the load intensity. However, the optimal value of W0

as well as the quantities W∗ and e do depend on the value of the load intensity P .

5.8 Concluding remarks

A method for analysis and optimization of fiber reinforced composite plate was de-
veloped. Considering the cases of unidirectional orientations of fibers the composite
was modelled as a quasi homogeneous anisotropic material having different prop-
erties in different directions. The attention was focused on the cases of radial and
circumferential orientation of fibers in the matrix material.

Invoking the methods of non-linear mathematical programming the optimal de-
sign parameters of plates with piecewise constant thickness are determined. The
optimization problems are solved with the aid unknown Lagrangian multipliers. Nu-
merical results are obtained with the aid of existing computer codes. It was shown
that the optimal values of design parameters depend on the physical and geometrical
parameters but these are insensitive with respect to the loading level.
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KOKKUVÕTE

Elastsete-platsete telgsümmeetriliste plaatide analüüs ja optimeerimine

Käesolevas töös uuritakse ümar- ja rõngasplaate, millele mõjub telgsümmeetriline
ristkoormus. Ümarplaat on ringsilinder, mille kõrgus on teiste mõõtmetega võrreldes
väike.

Insenerimehaanikast on teada, et konstruktsioonielementide (talade, plaatide,
koorikute) modelleerimisel on materjali kokkuhoiuks mõistlik arvestada lisaks elast-
setele deformatsioonidele ka plastseid. Esimesed teadusartiklid elastsete-plastsete
ümarplaatide kohta ilmusid 1950ndatel B. Tekinalpi [93] ja P. G. Hodge’i [27] su-
lest.

Käesolevas töös eeldatakse, et vaadeldavad ümar- ja rõngasplaadid on nn
sandwich-tüüpi ristlõikega materjalist. Sandwich-tüüpi ristlõikeks nimetatakse
ideaalset kahekihilist ristlõiget, mille kandva kihi paksus h on kihtidevahelise kau-
gusega H võrreldes väike. Kuna sandwich-tüüpi plaadi mudeli korral võib pinged
piki paksust lugeda konstantseteks, siis lihtsustab see oluliselt arvutusi. Võime eel-
dada, et kandva kihi teatud piirkond saab olla kas ainult elastses või täielikult plastses
seisundis.

Plastne seisund ja voolavus..
Kui plaadile rakendatakse väikseid koormusi, siis on kogu plaat elastne. Koormu-

se suurendamisel tekib plaadi sümmetriatelje ümber plastne piirkond. Plastses piir-
konnas peab pingeseisundit iseloomustav punkt asuma voolavuspinna (voolavuskõ-
vera) peal. Käesolevas töös kasutatakse tükati lineaarseid voolavuskõveraid. Plast-
susteooria põhiseoste kohaselt rahuldab pingeseisund peale voolavuspinna võrrandi-
te ka nn assotseeritud voolavusseadust. Assotseeritud voolavusseaduse kohaselt on
deformatsioonikiiruse vektor voolavuspinna igas punktis sellega risti ning suunatud
pinnast väljapoole.

Lisaks elastsete-plastsete ümar- ja rõngasplaatide paindeülesannete uurimisele
lahendatakse antud töös ka lisatugedega vabalt toetatud ümarplaadi optimeerimise
probleem.

Käesolev doktoritöö koosneb viiest peatükist. Esimene peatükk on referatiivne.
Selles esitatakse ümarplaadi jaoks tasakaaluvõrrandid, deformatsiooni kiiruse kom-
ponendid, plaadi läbipainde diferentsiaalvõrrandid ning selle üldlahend. Samuti tut-
vustakse Tresca’ voolavustingimust ning assotseeritud voolavusseadust.

Teises peatükis uuritakse konstantse paksusega elastset-plastset servast vabalt
toetatud ümarplaati Tresca’ ja rombi voolavustingimuse korral. Selgub, et mõlemal
juhul saab plastse ja elastse piirkonna rajapunkti tuletada analüütiliselt, st välja arvu-
tada biruutvõrrandist. Selles peatükis lahendatakse numbriliselt ka ühe astmega elast-
se ümarplaadi optimeerimisülesanne, kus etteantud plaadi ruumala korral arvutatakse
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optimaalsed kandvate kihtide paksused ning astme asukoht nii, et plaadi keskpunktis
toimuv läbipaine oleks minimaalne. Samuti lahendatakse elastse-plastse konstantse
paksusega servast vabalt toetatud rõngasplaadi paindeülesanne, st leitakse erineva-
te koormuste korral analüütiliselt ja numbriliselt plaadi läbipainded ning radiaal- ja
tangentsiaalsuunalised paindemomendid.

Kolmandas peatükis uuritakse tükati konstantse paksusega elastset-plastset seest
jäigalt kinnitatud rõngasplaati. Selgub, et antud astmelise rõngasplaadi pingeseisundi
saab jagada kolme erinevasse staadiumisse. Leitakse läbipainde ja paindemomenti-
de avaldised vastavalt elastse, elastse-plastse ja täiesti plastse plaadi pingeseisundi
korral.

Neljandas peatükis lahendatakse analüütiliselt ja numbriliselt lisatugedega ser-
vast vabalt toetatud elastse ümarplaadi optimeerimisülesanne. Leitakse ringtugede
optimaalsed asukohad nii, et plaadi läbipaine oleks minimaalne.

Viiendas peatükis lahendatakse numbriliselt sarnaselt teise peatüki ülesandele
ühe astmega servast vabalt toetatud anisotroopsest materjalist ümarplaadi optimimee-
rimisülesanne. Selle ülesande lahendamiseks tuletatakse analüütiliselt plaadi tasakaa-
luvõrrandid, läbipainde ja paindemomentide avaldised anisotroopse materjali korral.

Antud doktoritöö tulemused on publitseeritud seitsmes artiklis [49, 50, 51, 52,
53, 54, 55].
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